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Vertex cover

A vertex cover of a graph G = (V,E) is a subset of vertices S ⊆ V such that for
each edge {u, v} ∈ E, we have u ∈ S or v ∈ S.

Vertex Cover
Input: A graph G = (V,E) and an integer k
Parameter: k
Question: Does G have a vertex cover of size at most k?

a

b c

d e

S. Gaspers (UNSW) Kernelization Semester 2, 2016 4 / 36



Outline

1
Vertex Cover1section.1 1.1Simplification rules1subsection.1.1 1.2Preprocessing
algorithm2subsection.1.2 2Kernelization algorithms3section.2 3A smaller kernel for
Vertex Cover3section.3 4More on Crown Decompositions5section.4 5Kernels
and Fixed-parameter tractability6section.5 6Further Reading6section.6

S. Gaspers (UNSW) Kernelization Semester 2, 2016 5 / 36



Simplification rules for Vertex Cover

(Degree-0)

If ∃v ∈ V such that dG(v) = 0, then set G← G− v.

Proving correctness. A simplification rule is sound if for any instance, it
produces an equivalent instance. Two instances I, I ′ are equivalent if they are
both Yes-instances or they are both No-instances.

Lemma 1

(Degree-0) is sound.

Proof.

First, suppose (G− v, k) is a Yes-instance. Let S be a vertex cover for G− v of
size at most k. Then, S is also a vertex cover for G since no edge of G is incident
to v. Thus, (G, k) is a Yes-instance.
Now, suppose (G, k) is a Yes-instance. For the sake of contradiction, assume
(G− v, k) is a No-instance. Let S be a vertex cover for G of size at most k. But
then, S \ {v} is a vertex cover of size at most k for G− v; a contradiction.
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Simplification rules for Vertex Cover

(Degree-1)

If ∃v ∈ V such that dG(v) = 1, then set G← G−NG[v] and k ← k − 1.

Lemma 1

(Degree-1) is sound.

Proof.

Let u be the neighbor of v in G. Thus, NG[v] = {u, v}.
If S is a vertex cover of G of size at most k, then S \ {u, v} is a vertex cover of
G−NG[v] of size at most k − 1, because u ∈ S or v ∈ S.
If S′ is a vertex cover of G−NG[v] of size at most k − 1, then S′ ∪ {u} is a
vertex cover of G of size at most k, since all edges that are in G but not in
G−NG[v] are incident to v.
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Simplification rules for Vertex Cover

(Large Degree)

If ∃v ∈ V such that dG(v) > k, then set G← G− v and k ← k − 1.

Lemma 1

(Large Degree) is sound.

Proof.

Let S be a vertex cover of G of size at most k. If v /∈ S, then NG(v) ⊆ S,
contradicting that |S| ≤ k.
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Simplification rules for Vertex Cover

(Number of Edges)

If dG(v) ≤ k for each v ∈ V and |E| > k2 then return No

Lemma 1

(Number of Edges) is sound.

Proof.

Assume dG(v) ≤ k for each v ∈ V and |E| > k2.
Suppose S ⊆ V , |S| ≤ k, is a vertex cover of G.
We have that S covers at most k2 edges.
However, |E| ≥ k2 + 1.
Thus, S is not a vertex cover of G.
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Preprocessing algorithm for Vertex Cover

VC-preprocess
Input: A graph G and an integer k.
Output: A graph G′ and an integer k′ such that G has a vertex cover of size at

most k if and only if G′ has a vertex cover of size at most k′.

G′ ← G
k′ ← k
repeat

Execute simplification rules (Degree-0), (Degree-1), (Large Degree), and
(Number of Edges) for (G′, k′)

until no simplification rule applies
return (G′, k′)
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Effectiveness of preprocessing algorithms

How effective is VC-preprocess?

We would like to study preprocessing algorithms mathematically and quantify
their effectiveness.
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First try

Say that a preprocessing algorithm for a problem Π is nice if it runs in
polynomial time and for each instance for Π, it returns an instance for Π that
is strictly smaller.

→ executing it a linear number of times reduces the instance to a single bit

→ such an algorithm would solve Π in polynomial time

For NP-hard problems this is not possible unless P = NP

We need a different measure of effectiveness
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Measuring the effectiveness of preprocessing algorithms

We will measure the effectiveness in terms of the parameter

How large is the resulting instance in terms of the parameter?
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Effectiveness of VC-preprocess

Lemma 2

For any instance (G, k) for Vertex Cover, VC-preprocess produces an
equivalent instance (G′, k′) of size O(k2).

Proof.

Since all simplification rules are sound, (G = (V,E), k) and (G′ = (V ′, E′), k′)
are equivalent.
By (Number of Edges), |E′| ≤ (k′)2 ≤ k2.
By (Degree-0) and (Degree-1), each vertex in V ′ has degree at least 2 in G′.
Since

∑
v∈V ′ dG′(v) = 2|E′| ≤ 2k2, this implies that |V ′| ≤ k2.

Thus, |V ′|+ |E′| ⊆ O(k2).
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Kernelization: definition

Definition 3
A kernelization for a parameterized problem Π is a polynomial time algorithm,
which, for any instance I of Π with parameter k, produces an equivalent instance
I ′ of Π with parameter k′ such that |I ′| ≤ f(k) and k′ ≤ f(k) for a computable
function f .
We refer to the function f as the size of the kernel.

Note: We do not formally require that k′ ≤ k, but this will be the case for many
kernelizations.
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VC-preprocess is a quadratic kernelization

Theorem 4

VC-preprocess is a O(k2) kernelization for Vertex Cover.

Can we obtain a kernel with fewer vertices?
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Integer Linear Program for Vertex Cover

The Vertex Cover problem can be written as an Integer Linear Program (ILP).
For an instance (G = (V,E), k) for Vertex Cover with V = {v1, . . . , vn},
create a variable xi for each vertex vi, 1 ≤ i ≤ n.
Let X = {x1, . . . , xn}.

ILPVC(G)=
Minimize

n∑
i=1

xi

xi + xj ≥ 1 for each {vi, vj} ∈ E
xi ∈ {0, 1} for each i ∈ {1, . . . , n}

Then, (G, k) is a Yes-instance iff the objective value of ILPVC(G) is at most k.
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LP relaxation for Vertex Cover

LPVC(G)=
Minimize

n∑
i=1

xi

xi + xj ≥ 1 for each {vi, vj} ∈ E
xi ≥ 0 for each i ∈ {1, . . . , n}

Note: the value of an optimal solution for the Linear Program LPVC(G) is at
most the value of an optimal solution for ILPVC(G)
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Properties of LP optimal solution

Let α : X → R≥0 be an optimal solution for LPVC(G). Let

V− = {vi : α(xi) < 1/2}
V1/2 = {vi : α(xi) = 1/2}
V+ = {vi : α(xi) > 1/2}

Lemma 5

For each i, 1 ≤ i ≤ n, we have that α(xi) ≤ 1.

Lemma 6
V− is an independent set.

Lemma 7

NG(V−) = V+.
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Properties of LP optimal solution II

Lemma 8

For each S ⊆ V+ we have that |S| ≤ |NG(S) ∩ V−|.

Proof.
For the sake of contradiction, suppose there is a set S ⊆ V+ such that
|S| > |NG(S) ∩ V−|.
Let ε = minvi∈S{α(xi)− 1/2} and α′ : X → R≥0 s.t.

α′(xi) =


α(xi) if vi /∈ S ∪ (NG(S) ∩ V−)

α(xi)− ε if vi ∈ S
α(xi) + ε if vi ∈ NG(S) ∩ V−

Note that α′ is an improved solution for LPVC(G), contradicting that α is
optimal.
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Properties of LP optimal solution III

Theorem 9 (Hall’s marriage theorem)

A bipartite graph G = (V ] U,E) has a matching saturating S ⊆ V

⇔

for every subset W ⊆ S we have |W | ≤ |NG(W )|. 1

Consider the bipartite graph B = (V− ] V+, {{u, v} ∈ E : u ∈ V−, v ∈ V+}).

Lemma 10

There exists a matching M in B of size |V+|.

Proof.
The lemma follows from the previous lemma and Hall’s marriage theorem.

1A matching M in a graph G is a set of edges such that no two edges in M have a common
endpoint. A matching saturates a set of vertices S if each vertex in S is an end point of an edge
in M .
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Crown Decomposition: Definition

Definition 11 (Crown Decomposition)

A crown decomposition (C,H,B) of a graph G = (V,E) is a partition of V into
sets C,H, and B such that

the crown C is a non-empty independent set,

the head H = NG(C),

the body B = V \ (C ∪H), and

there is a matching of size |H| in G[H ∪ C].

By the previous lemmas, we obtain a crown decomposition (V−, V+, V1/2) of G if
V− 6= ∅.
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Crown Decomposition: Examples

a

b
c

d

e f g

a

b
c

d

e
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({a, e, g}, {b, d, f}, {c})
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Using the crown decomposition

Lemma 12

Suppose that G = (V,E) has a crown decomposition (C,H,B). Then,

vc(G) ≤ k ⇔ vc(G[B]) ≤ k − |H|,

where vc(G) denotes the size of the smallest vertex cover of G.

Proof.

(⇒): Let S be a vertex cover of G with |S| ≤ k. Since S contains at least one
vertex for each edge of a matching, |S ∩ (C ∪H)| ≥ |H|. Therefore, S ∩B is a
vertex cover for G[B] of size at most k − |H|.
(⇐): Let S be a vertex cover of G[B] with |S| ≤ k − |H|. Then, S ∪H is a
vertex cover of G of size at most k, since each edge that is in G but not in G′ is
incident to a vertex in H.
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Nemhauser-Trotter

Corollary 13 ([Nemhauser, Trotter, 1974])

There exists a smallest vertex cover S of G such that S ∩ V− = ∅ and V+ ⊆ S.
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Crown reduction

(Crown Reduction)

If solving LPV C(G) gives an optimal solution with V− 6= ∅, then return
(G− (V− ∪ V+), k − |V+|).

(Number of Vertices)

If solving LPV C(G) gives an optimal solution with V− = ∅ and |V | > 2k, then
return No.

Lemma 14

(Crown Reduction) and (Number of Vertices) are sound.

Proof.

(Crown Reduction) is sound by previous Lemmas.
Let α be an optimal solution for LPV C(G) and suppose V− = ∅. The value of this
solution is at least |V |/2. Thus, the value of an optimal solution for ILPVC(G) is
at least |V |/2. Since G has no vertex cover of size less than |V |/2, we have a
No-instance if k < |V |/2.
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Linear vertex-kernel for Vertex Cover

Theorem 15

Vertex Cover has a kernel with 2k vertices and O(k2) edges.

This is the smallest known kernel for Vertex Cover.
See http://fpt.wikidot.com/fpt-races for the current smallest kernels for
various problems.
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Crown Lemma

Lemma 16 (Crown Lemma)

Let G = (V,E) be a graph without isolated vertices and with |V | ≥ 3k + 1.
There is a polynomial time algorithm that either

finds a matching of size k + 1 in G, or

finds a crown decomposition of G.
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Let G = (V,E) be a graph without isolated vertices and with |V | ≥ 3k + 1.
There is a polynomial time algorithm that either

finds a matching of size k + 1 in G, or

finds a crown decomposition of G.

To prove the lemma, we need Kőnig’s Theorem

Theorem 17 ([Kőnig, 1916])

In every bipartite graph the size of a maximum matching is equal to the size of a
minimum vertex cover.
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Crown Lemma

Lemma 16 (Crown Lemma)

Let G = (V,E) be a graph without isolated vertices and with |V | ≥ 3k + 1.
There is a polynomial time algorithm that either

finds a matching of size k + 1 in G, or

finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If |M | ≥ k + 1, we are done.

Note that I := V \ V (M) is an independent set with ≥ k + 1 vertices.
Consider the bipartite graph B formed by edges with one endpoint in V (M) and
the other in I.
Compute a minimum vertex cover X and a maximum matching M ′ of B.
We know: |X| = |M ′| ≤ |M | ≤ k. Hence, X ∩ V (M) 6= ∅.
Let M∗ = {e ∈M ′ : e ∩ (X ∩ V (M)) 6= ∅}.
We obtain a crown decomposition with crown C = V (M∗) ∩ I and head
H = X ∩ V (M) = X ∩ V (M∗).
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We obtain a crown decomposition with crown C = V (M∗) ∩ I and head
H = X ∩ V (M) = X ∩ V (M∗).
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Exercise

A k-coloring of a graph G = (V,E) is a function f : V → {1, 2, ..., k} such that
f(u) 6= f(v) if uv ∈ E.

Saving Colors
Input: Graph G, integer k
Parameter: k
Question: Does G have a (n− k)-coloring?

Design a kernel for Saving Colors with O(k) vertices.
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Kernels and Fixed-parameter tractability

Theorem 17
Let Π be a decidable parameterized problem.
Π has a kernelization algorithm ⇔ Π is FPT.

Proof.

(⇒): An FPT algorithm is obtained by first running the kernelization, and then
any brute-force algorithm on the resulting instance.
(⇐): Let A be an FPT algorithm for Π with running time O(f(k)nc).
If f(k) < n, then A has running time O(nc+1). In this case, the kernelization
algorithm runs A and returns a trivial Yes- or No-instance depending on the
answer of A.
Otherwise, f(k) ≥ n. In this case, the kernelization algorithm outputs the input
instance.
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After computing a kernel ...

... we can use any algorithm to compute an actual solution.

Brute-force, faster exponential-time algorithms, parameterized algorithms,
often also approximation algorithms
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Kernels

A parameterized problem may not have a kernelization algorithm

Example, Coloring2 parameterized by k has no kernelization algorithm
unless P = NP.
A kernelization would lead to a polynomial time algorithm for the
NP-complete 3-Coloring problem

Kernelization algorithms lead to FPT algorithms ...

... FPT algorithms lead to kernels

2Can one color the vertices of an input graph G with k colors such that no two adjacent
vertices receive the same color?
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Further Reading

Chapter 2, Kernelization in
Marek Cygan, Fedor V. Fomin,  Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Micha lPilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

Chapter 4, Kernelization in
Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Springer, 2013.

Chapter 7, Data Reduction and Problem Kernels in
Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford
University Press, 2006.

Chapter 9, Kernelization and Linear Programming Techniques in
Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer,
2006.
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