6. Kernelization

COMP6741: Parameterized and Exact Computation

Serge Gaspers1,2

1School of Computer Science and Engineering, UNSW Australia
2Data61, Decision Sciences Group, CSIRO

Semester 2, 2016
Outline

1
Vertex Cover

1.1 Simplification rules
1.2 Preprocessing algorithm

2 Kernelization algorithms

3 A smaller kernel for Vertex Cover

4 More on Crown Decompositions

5 Kernels and Fixed-parameter tractability

6 Further Reading
1
Vertex Cover

section.1 1Simplification rules

subsection.1.1 1.1 Preprocessing algorithm

subsection.1.2 1.2 Kernelization algorithms

section.2 2 A smaller kernel for Vertex Cover

section.3 3 More on Crown Decompositions

section.4 4 Kernels and Fixed-parameter tractability

section.5 5 Further Reading

section.6
A vertex cover of a graph $G = (V, E)$ is a subset of vertices $S \subseteq V$ such that for each edge $\{u, v\} \in E$, we have $u \in S$ or $v \in S$.

VERTEX COVER

Input: A graph $G = (V, E)$ and an integer k

Parameter: k

Question: Does G have a vertex cover of size at most k?
Outline

1 Vertex Cover

1.1 Simplification rules

1.2 Preprocessing algorithm

2 Kernelization algorithms

3 A smaller kernel for \textsc{Vertex Cover}

4 More on Crown Decompositions

5 Kernels and Fixed-parameter tractability

6 Further Reading
Simplification rules for **Vertex Cover**

(Degree-0)

If $\exists v \in V$ such that $d_G(v) = 0$, then set $G \leftarrow G - v$.

Proving correctness.

A simplification rule is sound if for any instance, it produces an equivalent instance. Two instances I, I' are equivalent if they are both Yes-instances or they are both No-instances.

Lemma 1 (Degree-0) is sound.

Proof.

First, suppose $(G - v, k)$ is a Yes-instance. Let S be a vertex cover for $G - v$ of size at most k. Then, S is also a vertex cover for G since no edge of G is incident to v. Thus, (G, k) is a Yes-instance.

Now, suppose (G, k) is a Yes-instance. For the sake of contradiction, assume $(G - v, k)$ is a No-instance. Let S be a vertex cover for G of size at most k. But then, $S \{v\}$ is a vertex cover of size at most k for $G - v$; a contradiction.
Simplification rules for **Vertex Cover**

(Degree-0)

If $\exists v \in V$ such that $d_G(v) = 0$, then set $G \leftarrow G - v$.

Proving correctness. A simplification rule is **sound** if for any instance, it produces an equivalent instance. Two instances I, I' are **equivalent** if they are both **Yes**-instances or they are both **No**-instances.

Lemma 1

(Degree-0) is sound.
Simplification rules for **Vertex Cover**

(Degree-0)

If \(\exists v \in V \) such that \(d_G(v) = 0 \), then set \(G \leftarrow G - v \).

Proving correctness. A simplification rule is **sound** if for any instance, it produces an equivalent instance. Two instances \(I, I' \) are **equivalent** if they are both **Yes**-instances or they are both **No**-instances.

Lemma 1

(Degree-0) is sound.

Proof.

First, suppose \((G - v, k) \) is a **Yes**-instance. Let \(S \) be a vertex cover for \(G - v \) of size at most \(k \). Then, \(S \) is also a vertex cover for \(G \) since no edge of \(G \) is incident to \(v \). Thus, \((G, k) \) is a **Yes**-instance.

Now, suppose \((G, k) \) is a **Yes**-instance. For the sake of contradiction, assume \((G - v, k) \) is a **No**-instance. Let \(S \) be a vertex cover for \(G \) of size at most \(k \). But then, \(S \setminus \{v\} \) is a vertex cover of size at most \(k \) for \(G - v \); a contradiction. \(\square \)
Simplification rules for Vertex Cover

(Degree-1)

If \(\exists v \in V \) such that \(d_G(v) = 1 \), then set \(G \leftarrow G - N_G[v] \) and \(k \leftarrow k - 1 \).
Simplification rules for **Vertex Cover**

(Degree-1)

If $\exists v \in V$ such that $d_G(v) = 1$, then set $G \leftarrow G - N_G[v]$ and $k \leftarrow k - 1$.

Lemma 1

(Degree-1) is sound.

Proof.

Let u be the neighbor of v in G. Thus, $N_G[v] = \{u, v\}$.

If S is a vertex cover of G of size at most k, then $S \setminus \{u, v\}$ is a vertex cover of $G - N_G[v]$ of size at most $k - 1$, because $u \in S$ or $v \in S$.

If S' is a vertex cover of $G - N_G[v]$ of size at most $k - 1$, then $S' \cup \{u\}$ is a vertex cover of G of size at most k, since all edges that are in G but not in $G - N_G[v]$ are incident to v.

□
Simplification rules for \textbf{Vertex Cover}

\begin{itemize}
 \item If $\exists v \in V$ such that $d_G(v) > k$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.
\end{itemize}
Simplification rules for Vertex Cover

(Large Degree)

If $\exists v \in V$ such that $d_G(v) > k$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

Lemma 1

(Large Degree) is sound.

Proof.

Let S be a vertex cover of G of size at most k. If $v \notin S$, then $N_G(v) \subseteq S$, contradicting that $|S| \leq k$. \qed
Simplification rules for **Vertex Cover**

(Number of Edges)

If $d_G(v) \leq k$ for each $v \in V$ and $|E| > k^2$ then return **No**
Simplification rules for Vertex Cover

(Number of Edges)
If \(d_G(v) \leq k \) for each \(v \in V \) and \(|E| > k^2 \) then return No

Lemma 1
(Number of Edges) is sound.

Proof.
Assume \(d_G(v) \leq k \) for each \(v \in V \) and \(|E| > k^2 \).
Suppose \(S \subseteq V, |S| \leq k \), is a vertex cover of \(G \).
We have that \(S \) covers at most \(k^2 \) edges.
However, \(|E| \geq k^2 + 1 \).
Thus, \(S \) is not a vertex cover of \(G \).
1
Vertex Cover

1.1 Simplification rules
subsection.1.1 1.1 Preprocessing algorithm
subsection.1.2 2 Kernelization algorithms

3. A smaller kernel for Vertex Cover

4. More on Crown Decompositions

5. Kernels and Fixed-parameter tractability

6. Further Reading
Preprocessing algorithm for Vertex Cover

VC-preprocess

Input: A graph G and an integer k.

Output: A graph G' and an integer k' such that G has a vertex cover of size at most k if and only if G' has a vertex cover of size at most k'.

$$G' \leftarrow G$$
$$k' \leftarrow k$$

repeat

Execute simplification rules (Degree-0), (Degree-1), (Large Degree), and (Number of Edges) for (G', k')

until no simplification rule applies

return (G', k')
Effectiveness of preprocessing algorithms

- How effective is VC-preprocess?
- We would like to study preprocessing algorithms mathematically and quantify their effectiveness.
Say that a preprocessing algorithm for a problem Π is \textit{nice} if it runs in polynomial time and for each instance for Π, it returns an instance for Π that is strictly smaller.
Say that a preprocessing algorithm for a problem Π is **nice** if it runs in polynomial time and for each instance for Π, it returns an instance for Π that is strictly smaller.

→ executing it a linear number of times reduces the instance to a single bit
→ such an algorithm would solve Π in polynomial time

For **NP**-hard problems this is not possible unless $P = NP$

We need a different measure of effectiveness
Measuring the effectiveness of preprocessing algorithms

- We will measure the effectiveness in terms of the parameter
- How large is the resulting instance in terms of the parameter?
Lemma 2

For any instance \((G, k)\) for Vertex Cover, VC-preprocess produces an equivalent instance \((G', k')\) of size \(O(k^2)\).

Proof.

Since all simplification rules are sound, \((G = (V, E), k)\) and \((G' = (V', E'), k')\) are equivalent.

By (Number of Edges), \(|E'| \leq (k')^2 \leq k^2\).

By (Degree-0) and (Degree-1), each vertex in \(V'\) has degree at least 2 in \(G'\). Since \(\sum_{v \in V'} d_{G'}(v) = 2|E'| \leq 2k^2\), this implies that \(|V'| \leq k^2\).

Thus, \(|V'| + |E'| \subseteq O(k^2)\).
Outline

1

Vertex Cover

1.1 Simplification rules

1.2 Preprocessing algorithm

2

Kernelization algorithms

3

A smaller kernel for Vertex Cover

4

More on Crown Decompositions

5

Kernels and Fixed-parameter tractability

6

Further Reading
Definition 3

A **kernelization** for a parameterized problem Π is a **polynomial time** algorithm, which, for any instance I of Π with parameter k, produces an **equivalent** instance I' of Π with parameter k' such that $|I'| \leq f(k)$ and $k' \leq f(k)$ for a computable function f. We refer to the function f as the **size** of the kernel.

Note: We do not formally require that $k' \leq k$, but this will be the case for many kernelizations.
VC-preprocess is a quadratic kernelization

Theorem 4

VC-preprocess is a $O(k^2)$ **kernelization for Vertex Cover.**

Can we obtain a kernel with fewer vertices?
1 Vertex Cover 1.1 Simplification rules 1.2 Preprocessing algorithm 2 Kernelization algorithms 3 A smaller kernel for Vertex Cover 4 More on Crown Decompositions 5 Kernels and Fixed-parameter tractability 6 Further Reading
The **Vertex Cover** problem can be written as an Integer Linear Program (ILP). For an instance \((G = (V, E), k)\) for **Vertex Cover** with \(V = \{v_1, \ldots, v_n\}\), create a variable \(x_i\) for each vertex \(v_i, 1 \leq i \leq n\). Let \(X = \{x_1, \ldots, x_n\}\).

\[
\text{ILP}_{VC}(G) = \begin{align*}
\text{Minimize} & \sum_{i=1}^{n} x_i \\
\text{subject to} & \quad x_i + x_j \geq 1 \quad \text{for each} \quad \{v_i, v_j\} \in E \\
& \quad x_i \in \{0, 1\} \quad \text{for each} \quad i \in \{1, \ldots, n\}
\end{align*}
\]

Then, \((G, k)\) is a **Yes**-instance iff the objective value of \(\text{ILP}_{VC}(G)\) is at most \(k\).
LP relaxation for \textbf{Vertex Cover}

\[
\text{LP}_{\text{VC}}(G) = \begin{array}{ll}
\text{Minimize} & \sum_{i=1}^{n} x_i \\
& x_i + x_j \geq 1 \quad \text{for each } \{v_i, v_j\} \in E \\
& x_i \geq 0 \quad \text{for each } i \in \{1, \ldots, n\}
\end{array}
\]

\textbf{Note:} the value of an optimal solution for the Linear Program \(\text{LP}_{\text{VC}}(G)\) is at most the value of an optimal solution for \(\text{ILP}_{\text{VC}}(G)\)
Properties of LP optimal solution

Let $\alpha : X \rightarrow \mathbb{R}_{\geq 0}$ be an optimal solution for LP$_{VC}(G')$. Let

\[
V_- = \{v_i : \alpha(x_i) < 1/2\}
\]
\[
V_{1/2} = \{v_i : \alpha(x_i) = 1/2\}
\]
\[
V_+ = \{v_i : \alpha(x_i) > 1/2\}
\]
Properties of LP optimal solution

Let $\alpha : X \rightarrow \mathbb{R}_{\geq 0}$ be an optimal solution for LP$_{VC}(G')$. Let

\[
V_- = \{v_i : \alpha(x_i) < 1/2\}
\]
\[
V_{1/2} = \{v_i : \alpha(x_i) = 1/2\}
\]
\[
V_+ = \{v_i : \alpha(x_i) > 1/2\}
\]

Lemma 5

For each $i, 1 \leq i \leq n$, we have that $\alpha(x_i) \leq 1$.

Lemma 6

V_- is an independent set.

Lemma 7

$N_G(V_-) = V_+$.

Lemma 8

For each \(S \subseteq V_+ \) we have that \(|S| \leq |N_G(S) \cap V_-|\).

Proof.

For the sake of contradiction, suppose there is a set \(S \subseteq V_+ \) such that \(|S| > |N_G(S) \cap V_-|\).

Let \(\epsilon = \min_{v_i \in S} \{\alpha(x_i) - 1/2\} \) and \(\alpha' : X \rightarrow \mathbb{R}_{\geq 0} \) s.t.

\[
\alpha'(x_i) = \begin{cases}
\alpha(x_i) & \text{if } v_i \notin S \cup (N_G(S) \cap V_-) \\
\alpha(x_i) - \epsilon & \text{if } v_i \in S \\
\alpha(x_i) + \epsilon & \text{if } v_i \in N_G(S) \cap V_-
\end{cases}
\]

Note that \(\alpha' \) is an improved solution for \(\text{LP}_{\text{VC}}(G) \), contradicting that \(\alpha \) is optimal.
Theorem 9 (Hall’s marriage theorem)

A bipartite graph $G = (V \uplus U, E)$ has a matching saturating $S \subseteq V$ if and only if for every subset $W \subseteq S$ we have $|W| \leq |N_G(W)|$.

Lemma 10

There exists a matching M in B of size $|V^+|$.

Proof. The lemma follows from the previous lemma and Hall’s marriage theorem.

1 A matching M in a graph G is a set of edges such that no two edges in M have a common endpoint. A matching saturates a set of vertices S if each vertex in S is an end point of an edge in M.
Theorem 9 (Hall’s marriage theorem)

A bipartite graph $G = (V \uplus U, E)$ has a matching saturating $S \subseteq V$ if and only if for every subset $W \subseteq S$ we have $|W| \leq |N_G(W)|$. \(^1\)

Consider the bipartite graph $B = (V_\neg \uplus V_+, \{\{u, v\} \in E : u \in V_\neg, v \in V_+\})$.

Lemma 10

There exists a matching M in B of size $|V_+|$.

Proof.

The lemma follows from the previous lemma and Hall’s marriage theorem. \(\square\)

\(^1\)A matching M in a graph G is a set of edges such that no two edges in M have a common endpoint. A matching saturates a set of vertices S if each vertex in S is an end point of an edge in M.
Definition 11 (Crown Decomposition)

A crown decomposition \((C, H, B)\) of a graph \(G = (V, E)\) is a partition of \(V\) into sets \(C, H,\) and \(B\) such that

- the crown \(C\) is a non-empty independent set,
- the head \(H = N_G(C)\),
- the body \(B = V \setminus (C \cup H)\), and
- there is a matching of size \(|H|\) in \(G[H \cup C]\).

By the previous lemmas, we obtain a crown decomposition \((V_-, V_+, V_{1/2})\) of \(G\) if \(V_- \neq \emptyset\).
Crown Decomposition: Examples

![Graph 1](attachment:image1.png)

![Graph 2](attachment:image2.png)
Crown Decomposition: Examples

crown decomposition
$$(\{a, e, g\}, \{b, d, f\}, \{c\})$$

has no crown decomposition
Using the crown decomposition

Lemma 12

Suppose that $G = (V, E)$ has a crown decomposition (C, H, B). Then,

$$vc(G) \leq k \iff vc(G[B]) \leq k - |H|,$$

where $vc(G)$ denotes the size of the smallest vertex cover of G.

Lemma 12

Suppose that $G = (V, E)$ has a crown decomposition (C, H, B). Then,

$$
vc(G) \leq k \iff vc(G[B]) \leq k - |H|,
$$

where $vc(G)$ denotes the size of the smallest vertex cover of G.

Proof.

(\Rightarrow): Let S be a vertex cover of G with $|S| \leq k$. Since S contains at least one vertex for each edge of a matching, $|S \cap (C \cup H)| \geq |H|$. Therefore, $S \cap B$ is a vertex cover for $G[B]$ of size at most $k - |H|$.

(\Leftarrow): Let S be a vertex cover of $G[B]$ with $|S| \leq k - |H|$. Then, $S \cup H$ is a vertex cover of G of size at most k, since each edge that is in G but not in G' is incident to a vertex in H. \qed
Corollary 13 ([Nemhauser, Trotter, 1974])

There exists a smallest vertex cover S of G such that $S \cap V_- = \emptyset$ and $V_+ \subseteq S$.

If solving \(\text{LP}_{V C}(G) \) gives an optimal solution with \(V_\neq \emptyset \), then return
\((G - (V_\cup V_+), k - |V_+|) \).
Crown reduction

(Crown Reduction)

If solving LP\(_{VC}(G)\) gives an optimal solution with \(V_— \neq \emptyset\), then return
\((G - (V_— \cup V_+), k - |V_+|)\).

(Number of Vertices)

If solving LP\(_{VC}(G)\) gives an optimal solution with \(V_— = \emptyset\) and \(|V| > 2k\), then return \textbf{No}.
Crown reduction

(Crown Reduction)
If solving LP_{VC}(G) gives an optimal solution with \(V_- \neq \emptyset \), then return
\((G - (V_- \cup V_+), k - |V_+|) \).

(Number of Vertices)
If solving LP_{VC}(G) gives an optimal solution with \(V_- = \emptyset \) and \(|V| > 2k \), then return No.

Lemma 14
(Crown Reduction) and (Number of Vertices) are sound.

Proof.
(Crown Reduction) is sound by previous Lemmas.
Let \(\alpha \) be an optimal solution for LP_{VC}(G) and suppose \(V_- = \emptyset \). The value of this solution is at least \(|V|/2 \). Thus, the value of an optimal solution for ILP_{VC}(G) is at least \(|V|/2 \). Since \(G \) has no vertex cover of size less than \(|V|/2 \), we have a No-instance if \(k < |V|/2 \). \(\square \)
Theorem 15

Vertex Cover has a kernel with \(2k \) vertices and \(O(k^2) \) edges.

This is the smallest known kernel for **Vertex Cover**.
See http://fpt.wikidot.com/fpt-races for the current smallest kernels for various problems.
1 Vertex Cover

1.1 Simplification rules

1.2 Preprocessing algorithm

2 Kernelization algorithms

3 A smaller kernel for Vertex Cover

4 More on Crown Decompositions

5 Kernels and Fixed-parameter tractability

6 Further Reading
Lemma 16 (Crown Lemma)

Let $G = (V, E)$ be a graph without isolated vertices and with $|V| \geq 3k + 1$. There is a polynomial time algorithm that either

- finds a matching of size $k + 1$ in G, or
- finds a crown decomposition of G.

Lemma 16 (Crown Lemma)

Let $G = (V, E)$ be a graph without isolated vertices and with $|V| \geq 3k + 1$. There is a polynomial time algorithm that either

- finds a matching of size $k + 1$ in G, or
- finds a crown decomposition of G.

To prove the lemma, we need König’s Theorem

Theorem 17 ([König, 1916])

In every bipartite graph the size of a maximum matching is equal to the size of a minimum vertex cover.
Lemma 16 (Crown Lemma)

Let $G = (V, E)$ be a graph without isolated vertices and with $|V| \geq 3k + 1$. There is a polynomial time algorithm that either

- finds a matching of size $k + 1$ in G, or
- finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If $|M| \geq k + 1$, we are done.
Lemma 16 (Crown Lemma)

Let $G = (V, E)$ be a graph without isolated vertices and with $|V| \geq 3k + 1$. There is a polynomial time algorithm that either

- finds a matching of size $k + 1$ in G, or
- finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If $|M| \geq k + 1$, we are done. Note that $I := V \setminus V(M)$ is an independent set with $\geq k + 1$ vertices.
Crown Lemma

Lemma 16 (Crown Lemma)

Let $G = (V, E)$ be a graph without isolated vertices and with $|V| \geq 3k + 1$. There is a polynomial time algorithm that either

- finds a matching of size $k + 1$ in G, or
- finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If $|M| \geq k + 1$, we are done.

Note that $I := V \setminus V(M)$ is an independent set with $\geq k + 1$ vertices.

Consider the bipartite graph B formed by edges with one endpoint in $V(M)$ and the other in I.
Lemma 16 (Crown Lemma)

Let $G = (V, E)$ be a graph without isolated vertices and with $|V| \geq 3k + 1$. There is a polynomial time algorithm that either

- finds a matching of size $k + 1$ in G, or
- finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If $|M| \geq k + 1$, we are done.

Note that $I := V \setminus V(M)$ is an independent set with $\geq k + 1$ vertices.

Consider the bipartite graph B formed by edges with one endpoint in $V(M)$ and the other in I.

Compute a minimum vertex cover X and a maximum matching M' of B.

Lemma 16 (Crown Lemma)

Let $G = (V, E)$ be a graph without isolated vertices and with $|V| \geq 3k + 1$. There is a polynomial time algorithm that either

- finds a matching of size $k + 1$ in G, or
- finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If $|M| \geq k + 1$, we are done.

Note that $I := V \setminus V(M)$ is an independent set with $\geq k + 1$ vertices.

Consider the bipartite graph B formed by edges with one endpoint in $V(M)$ and the other in I.

Compute a minimum vertex cover X and a maximum matching M' of B.

We know: $|X| = |M'| \leq |M| \leq k$. Hence, $X \cap V(M) \neq \emptyset$.

Lemma 16 (Crown Lemma)

Let $G = (V, E)$ be a graph without isolated vertices and with $|V| \geq 3k + 1$. There is a polynomial time algorithm that either

- finds a matching of size $k + 1$ in G, or
- finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If $|M| \geq k + 1$, we are done.

Note that $I := V \setminus V(M)$ is an independent set with $\geq k + 1$ vertices.

Consider the bipartite graph B formed by edges with one endpoint in $V(M)$ and the other in I.

Compute a minimum vertex cover X and a maximum matching M' of B.

We know: $|X| = |M'| \leq |M| \leq k$. Hence, $X \cap V(M) \neq \emptyset$.

Let $M^* = \{e \in M' : e \cap (X \cap V(M)) \neq \emptyset\}$.
Lemma 16 (Crown Lemma)

Let $G = (V, E)$ be a graph without isolated vertices and with $|V| \geq 3k + 1$. There is a polynomial time algorithm that either

- finds a matching of size $k + 1$ in G, or
- finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If $|M| \geq k + 1$, we are done.

Note that $I := V \setminus V(M)$ is an independent set with $\geq k + 1$ vertices.

Consider the bipartite graph B formed by edges with one endpoint in $V(M)$ and the other in I.

Compute a minimum vertex cover X and a maximum matching M' of B.

We know: $|X| = |M'| \leq |M| \leq k$. Hence, $X \cap V(M) \neq \emptyset$.

Let $M^* = \{e \in M' : e \cap (X \cap V(M)) \neq \emptyset\}$.

We obtain a crown decomposition with crown $C = V(M^*) \cap I$ and head $H = X \cap V(M) = X \cap V(M^*)$.

□
A k-coloring of a graph $G = (V, E)$ is a function $f : V \rightarrow \{1, 2, ..., k\}$ such that $f(u) \neq f(v)$ if $uv \in E$.

Saving Colors

- **Input:** Graph G, integer k
- **Parameter:** k
- **Question:** Does G have a $(n - k)$-coloring?

Design a kernel for **Saving Colors** with $O(k)$ vertices.
1
Vertex Cover

1.1 Simplification rules

1.2 Preprocessing algorithm

2 Kernelization algorithms

3 A smaller kernel for Vertex Cover

4 More on Crown Decompositions

5 Kernels and Fixed-parameter tractability

6 Further Reading
Theorem 17

Let Π be a decidable parameterized problem.
Π has a kernelization algorithm \iff Π is FPT.
Theorem 17

Let Π be a decidable parameterized problem. Π has a kernelization algorithm \iff Π is FPT.

Proof.

(\Rightarrow): An FPT algorithm is obtained by first running the kernelization, and then any brute-force algorithm on the resulting instance.

(\Leftarrow): Let A be an FPT algorithm for Π with running time $O(f(k)n^c)$. If $f(k) < n$, then A has running time $O(n^{c+1})$. In this case, the kernelization algorithm runs A and returns a trivial Yes- or No-instance depending on the answer of A.

Otherwise, $f(k) \geq n$. In this case, the kernelization algorithm outputs the input instance.
... we can use any algorithm to compute an actual solution.

- Brute-force, faster exponential-time algorithms, parameterized algorithms, often also approximation algorithms
A parameterized problem may not have a kernelization algorithm

- Example, **Coloring**\(^2\) parameterized by \(k\) has no kernelization algorithm unless \(P = NP\).

- A kernelization would lead to a polynomial time algorithm for the **NP-complete 3-Coloring** problem

Kernelization algorithms lead to **FPT** algorithms ...

... **FPT** algorithms lead to kernels

\(^2\)Can one color the vertices of an input graph \(G\) with \(k\) colors such that no two adjacent vertices receive the same color?
Outline

1 Vertex Cover
 1.1 Simplification rules
 1.2 Preprocessing algorithm
 2 Kernelization algorithms

3 A smaller kernel for Vertex Cover

4 More on Crown Decompositions

5 Kernels and Fixed-parameter tractability

6 Further Reading
Further Reading

