
DESN2000 Computer Engineering) Getting Started With STM32cubeIDE 1

DESN2000 (Computer Engineering)
Getting Started With STM32cubeIDE
Author: Riley Haydon

Created: T2 2024

STM32CubeIDE is STMicroelectronicsʼs integrated development environment IDE for their
microcontrollers. The development you have got by now has a NUCLEOF303RE board
equipped with a 32-bit STM microcontroller. The STM32CubeIDE includes the necessary
drivers, compilers, and a debugger, all in a single package.

Install STM32CubeIDE
You can download and install CubeIDE from the link below:

https://www.st.com/en/development-tools/stm32cubeide.html

Itʼs free, although you do have to sign up for an account / give them your email address. The
good thing is it is supported on Windows, Linux and MacOS. Download the package for your
operating system and install the package as you would install any other software on your
computer.

When launching the app for the first time, you may be prompted to create/login to an account.
If not you can access the login by going mySt → login in the menu bar. I know creating an
account to use an IDE is a pain and unnecessary, but I found that some features simply didnt
work when I wasnt logged in.

https://www.st.com/en/development-tools/stm32cubeide.html

DESN2000 Computer Engineering) Getting Started With STM32cubeIDE 2

Creating a Project

Start the CubeIDE application, it should look something like this → i.e an empty workspace with
no projects.

Mine is in dark mode)

Under the menu bar at the top: File > New > STM32 Project

DESN2000 Computer Engineering) Getting Started With STM32cubeIDE 3

⚠ Dont be alarmed  It will download some stuff after you create the new project and
initialise the GUI for the board selector it can be a bit laggy, so be patient

Page 1
For this project, we are using the Nucleo-F303RE.

� Select ‘Board Selectorʼ tab in the top left.

� Search Nucleo-F303RE inside the ‘Part Number Searchʼ dropdown/textbox

� In the table of boards in the lower RHS, select the board we searched for

� Click ‘nextʼ down the bottom right.

DESN2000 Computer Engineering) Getting Started With STM32cubeIDE 4

Page 2
You can now pick a project name. You may pick any location for the project you like, I will be
leaving mine in the default location.

Verify the other fields under the options category are as follows.

Targeted Language: C

Targeted Binary Type: Executable

Targeted Project Type: STM32Cube

Page 3

DESN2000 Computer Engineering) Getting Started With STM32cubeIDE 5

Verify the target reference is NUCLEO
F303RE. And press Finish

If you missed this step because you pressed
finish before next, dont worry its just a
checking page - everything should be okay)

💡 Your version number for ‘Firmware
Package Name and Versionʼ may be
different to mine, as long as its
V1.11.4 or higher it should be fine

You will then get a popup asking if you want to ‘Initialise peripherals to their default mode.

Press Yes

It may take some time after this to load everything for the first time.

Finally
After the project has been created, you should now see a nice GUI of the F303re showing the
pinout diagram.

DESN2000 Computer Engineering) Getting Started With STM32cubeIDE 6

💡 Here, we can set up our peripherals. By choosing “yesˮ a moment ago, it has pre-
populated some settings for us.

PA5 is LD2, the NUCLEO boardʼs Green LED

PC13 is B1, the NUCLEO boardʼs Blue Push Button

Keep the defaults for now, we will learn all these shortly, so donʼt worry.

💾 Writing to the Board

DESN2000 Computer Engineering) Getting Started With STM32cubeIDE 7

Generating the Code
In the top menu bar go Project > Generate Code

If you get a popup asking ‘This action can be
associated…ʼ  Press Yes

This genrates C files to work with under a Src
directory and puts a HAL Hardware Abstraction
Layer) into an Includes directory.

Expand the folders right under the project explorer
and see what it has generated:

👀 Looking at main.c
In this tutorial, weʼll focus on the project and autogenerated code section, starting with main.c .

DESN2000 Computer Engineering) Getting Started With STM32cubeIDE 8

Youʼll see that main.c is already quite large, containing a fair amount of autogenerated code.

⚠ A key piece of information to remember here is that main.c can be edited by the code
generator, so itʼs important to only write code in the USER sections

int main(void)

{

 /* USER CODE BEGIN 1 */

 /* USER CODE END 1 */

 /* MCU Configuration----------

--------------*/

 /* Reset of all peripherals, I

nitializes the Flash interface a

nd the Systick. */

 HAL_Init();

 /* USER CODE BEGIN Init */

 /* USER CODE END Init */

 /* Configure the system clock

*/

 SystemClock_Config();

 /* USER CODE BEGIN SysInit */

 /* USER CODE END SysInit */

 /* Initialize all configured p

eripherals */

 MX_GPIO_Init();

 MX_USART2_UART_Init();

 /* USER CODE BEGIN 2 */

 /* USER CODE END 2 */

 /* Infinite loop */

 /* USER CODE BEGIN WHILE */

 while (1)

Observe in this block of code that there are
several USER CODE BEGIN and USER CODE END
sections marked out by comments

Any code written inside these blocks is safe
and will not be deleted by the code
autogenerator.

Any code written outside those blocks is
unsafe and will be deleted by the code
autogenerator any time you edit the device
configuration settings that we looked at
earlier.

Files that you yourself add to the project (e.g.
MySuperCFile.c) are also totally safe. Itʼs just
this set of autogenerated .c (and .h) files
that you must be careful with when adding
code.

Now to look at the function names used in
the autogenerated code.

Any function call beginning with HAL_ is
from the STM32 HAL, and is provided in
the library files. Thereʼs HAL functions to
do all sorts of things, including using the
UART, writing a Pin, etc.

Any function call beginning with MX_ is
autogenerated by CubeIDE. These
functions tend to be used to initialise
functions.

There are exceptions to these rules,
including, annoyingly, SystemClock_Config() ,
which is also an autogenerated function.

DESN2000 Computer Engineering) Getting Started With STM32cubeIDE 9

 {

 /* USER CODE END WHILE */

 /* USER CODE BEGIN 3 */

 }

 /* USER CODE END 3 */

}

� Writing Our Own Code!
Letʼs add a smidge of C code of our own now! After the Infinite Loop area, weʼre going to add
code to toggle the LED under section 3. To get the autosuggest to show up you press
Ctrl+Space:

/* Infinite loop */

/* USER CODE BEGIN WHILE */

while (1)

{

 /* USER CODE END WHILE */

 /* USER CODE BEGIN 3 */

//Here's my new code that

I've added to toggle the Green L

ED (LD2)

HAL_GPIO_TogglePin(LD2_GPIO_

Port, LD2_Pin);

HAL_Delay(1000);

}

/* USER CODE END 3 */

Note the following:

We have put my code only inside section
3

Under the device configuration tool, the
Led GPIO pin was named LD2  observe
how a name has automatically been
generated for both the Pin and the Port

We have used two HAL functions, one to
toggle a GPIO pin, and one to cause a
delay of 1000 milliseconds.

This tiny project is all we needed to blink that
on-board LED at around once per second.

Compiling and Flashing

DESN2000 Computer Engineering) Getting Started With STM32cubeIDE 10

STM32CubeIDE actually makes it pretty easy
to compile our work and get it onto the
STM32 chip. The first step is to produce the
first version of the compiled .elf (a binary
version of our code). We need this .elf so
that we can point the download tool to it.

To generate the .elf , we need to do a build.
Press the build button on the toolbar:

Now, build information is presented in the
console at the bottom of the screen:

Now we want to send this compiled binary onto the STM32 microcontroller. Letʼs plug in the
development board. The Red power LED (below the blue switch) is lit, as is the larger
communication LED (by the USB cable).

Inside STM32CubeIDE, select the run button.

Pressing the build button

Result of the build

DESN2000 Computer Engineering) Getting Started With STM32cubeIDE 11

This will open the Run dialog (as itʼs the first
time weʼve run it). The settings we choose
now will be saved as a run configuration
which we can re-use or edit later. Press OK
and the download will proceed.

The LED next to the usb connector should
flash red and green several times indicating a
download is in progress.

Interestingly, we do not get the option to choose a board or USB port or anything during this
process, it all just happened automagically. The NUCLEO boardʼs communication LED should
light up during this time, and after that, it seems that the board should be running the
programme.

It is as easy as that - youʼve got everything set up now. For any new code from here, you just
need to hit the run button - it will compile it for you automatically.

This tutorial was adapted from the blog post by Dr Hammond Pearce. If you prefer a detailed
version, you may follow that blog post.

Tutorial: Getting started with an ST development board using STM32CubeIDE
Project initialisation, intro to debugging, and the virtual COM port

https://01001000.xyz/20200511Tutorial-STM32CubeIDEGetting-started/

https://www.unsw.edu.au/staff/hammond-pearce
https://01001000.xyz/2020-05-11-Tutorial-STM32CubeIDE-Getting-started/

