
Lab: Code Verification and Z3 Theorem Prover
(Week 7)

Yulei Sui
School of Computer Science and Engineering

University of New South Wales, Australia

1

COMP6131 Software Security Analysis 2025



Quiz-2, Exercise-2 and Assignment-2
• Quiz-2 with 25 questions (5 points), due date: 23:59 Tuesday, Week 7

• Logical formula and predicate logic
• Z3’s knowledge and translation rules

• Lab-Exercise-2 (5 points), due date: 23:59 Tuesday, Week 7
• Goal: Manually translate code into z3 formulas/constraints and verify the

assertions embedded in the code.
• Specification:https://github.com/SVF-tools/
Software-Security-Analysis/wiki/Lab-Exercise-2

• SVF Z3 APIs: https:
//github.com/SVF-tools/Software-Security-Analysis/wiki/SVF-Z3-API

• Assignment-2 (25 points) due date: 23:59 Tuesday, Week 8
• Goal: automatically perform assertion-based verification for code using static

symbolic execution.
• Specification:https:
//github.com/SVF-tools/Software-Security-Analysis/wiki/Assignment-2

2

COMP6131 Software Security Analysis 2025

https://github.com/SVF-tools/Software-Security-Analysis/wiki/Lab-Exercise-2
https://github.com/SVF-tools/Software-Security-Analysis/wiki/Lab-Exercise-2
https://github.com/SVF-tools/Software-Security-Analysis/wiki/SVF-Z3-API
https://github.com/SVF-tools/Software-Security-Analysis/wiki/SVF-Z3-API
https://github.com/SVF-tools/Software-Security-Analysis/wiki/Assignment-2
https://github.com/SVF-tools/Software-Security-Analysis/wiki/Assignment-2


Methods to Be Implemented

You need to implement the following four functions in Assignment-2.cpp:
• SSE::reachability

• SSE::collectAndTranslatePath

• SSE::handleCall

• SSE::handleRet

• SSE::handleNonBranch

• SSE::handleBranch

• The required implementation parts are indicated with TODO comments and
you only need to fill up the code template if a method is partially implemented.

3

COMP6131 Software Security Analysis 2025



Software Verification Competition (SV-COMP)
Optional for Interested Students.

Cameron McGowan & Yulei Sui
School of Computer Science and Engineering

University of New South Wales, Australia

4

COMP6131 Software Security Analysis 2025



What is SV-COMP?
• SV-COMP is an annual software verification competition held as part of

the International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS).

• The competition goals are as follows:
• Provide a snapshot of the state-of-the-art in software verification to the

community. This makes it easy to compare the efficacy of different tools for
different problems when selecting one to use.

• Increase the visibility and credits that tool developers receive. This
encourages the development of verifiers in research and provides a forum for
students to share their work.

• Establish a set of benchmarks for software verification in the community. This
means that researchers with a new technique can easily compare it to
established literature.

• Competition website: https://sv-comp.sosy-lab.org/

5

COMP6131 Software Security Analysis 2025

https://sv-comp.sosy-lab.org/


What is SV-COMP?
• SV-COMP is an annual software verification competition held as part of

the International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS).

• The competition goals are as follows:
• Provide a snapshot of the state-of-the-art in software verification to the

community. This makes it easy to compare the efficacy of different tools for
different problems when selecting one to use.

• Increase the visibility and credits that tool developers receive. This
encourages the development of verifiers in research and provides a forum for
students to share their work.

• Establish a set of benchmarks for software verification in the community. This
means that researchers with a new technique can easily compare it to
established literature.

• Competition website: https://sv-comp.sosy-lab.org/

5

COMP6131 Software Security Analysis 2025

https://sv-comp.sosy-lab.org/


What is SV-COMP?
• SV-COMP is an annual software verification competition held as part of

the International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS).

• The competition goals are as follows:
• Provide a snapshot of the state-of-the-art in software verification to the

community. This makes it easy to compare the efficacy of different tools for
different problems when selecting one to use.

• Increase the visibility and credits that tool developers receive. This
encourages the development of verifiers in research and provides a forum for
students to share their work.

• Establish a set of benchmarks for software verification in the community. This
means that researchers with a new technique can easily compare it to
established literature.

• Competition website: https://sv-comp.sosy-lab.org/

5

COMP6131 Software Security Analysis 2025

https://sv-comp.sosy-lab.org/


How does SV-COMP work?
• Verification tasks:

• A verification task consists of a C program and a specification. A verification
run is a non-interactive execution of a competition candidate on a single
verification task, in order to check if the following statement is correct: “The
program satisfies the specification.”

• The result of a verification run is a triple (ANSWER, WITNESS, TIME).
ANSWER is one of the following outcomes:

TRUE + Witness
The specification is satisfied and

a correctness witness is produced.

FALSE + Witness
The specification is violated and

and a violation witness is produced.

UNKNOWN
The tool cannot decide the problem or terminates

by a tool crash, time-out, or out-of-memory.

6

COMP6131 Software Security Analysis 2025



How does SV-COMP work?
• Verification tasks:

• A verification task consists of a C program and a specification. A verification
run is a non-interactive execution of a competition candidate on a single
verification task, in order to check if the following statement is correct: “The
program satisfies the specification.”

• The result of a verification run is a triple (ANSWER, WITNESS, TIME).
ANSWER is one of the following outcomes:

TRUE + Witness
The specification is satisfied and

a correctness witness is produced.

FALSE + Witness
The specification is violated and

and a violation witness is produced.

UNKNOWN
The tool cannot decide the problem or terminates

by a tool crash, time-out, or out-of-memory.

6

COMP6131 Software Security Analysis 2025



How does SV-COMP work?
• Witnesses:

• The witness has to be written to a file witness.graphml or witness.yml, which is
given to a witness validator to check validity. The result is counted as correct
only if at least one validator successfully validated it.

• Correctness witnesses: We provide a path of invariants which hold and prove
the specification is met.

• Violation witnesses: We provide a path of concrete inputs which violate the
specification.

• Scoring:
Points Reported Result Description

0 UNKNOWN Failure to compute a verification result.
+1 FALSE correct Error found violation witness was confirmed.
-16 FALSE incorrect Error reported for a correct program.
+2 TRUE correct Correctness reported and validated.
-32 TRUE incorrect Correctness reported but error was present.

7

COMP6131 Software Security Analysis 2025



How does SV-COMP work?
• Witnesses:

• The witness has to be written to a file witness.graphml or witness.yml, which is
given to a witness validator to check validity. The result is counted as correct
only if at least one validator successfully validated it.

• Correctness witnesses: We provide a path of invariants which hold and prove
the specification is met.

• Violation witnesses: We provide a path of concrete inputs which violate the
specification.

• Scoring:
Points Reported Result Description

0 UNKNOWN Failure to compute a verification result.
+1 FALSE correct Error found violation witness was confirmed.
-16 FALSE incorrect Error reported for a correct program.
+2 TRUE correct Correctness reported and validated.
-32 TRUE incorrect Correctness reported but error was present.

7

COMP6131 Software Security Analysis 2025



How does SV-COMP work?
• Witnesses:

• The witness has to be written to a file witness.graphml or witness.yml, which is
given to a witness validator to check validity. The result is counted as correct
only if at least one validator successfully validated it.

• Correctness witnesses: We provide a path of invariants which hold and prove
the specification is met.

• Violation witnesses: We provide a path of concrete inputs which violate the
specification.

• Scoring:
Points Reported Result Description

0 UNKNOWN Failure to compute a verification result.
+1 FALSE correct Error found violation witness was confirmed.
-16 FALSE incorrect Error reported for a correct program.
+2 TRUE correct Correctness reported and validated.
-32 TRUE incorrect Correctness reported but error was present.

7

COMP6131 Software Security Analysis 2025



How does SV-COMP work?
• Witnesses:

• The witness has to be written to a file witness.graphml or witness.yml, which is
given to a witness validator to check validity. The result is counted as correct
only if at least one validator successfully validated it.

• Correctness witnesses: We provide a path of invariants which hold and prove
the specification is met.

• Violation witnesses: We provide a path of concrete inputs which violate the
specification.

• Scoring:
Points Reported Result Description

0 UNKNOWN Failure to compute a verification result.
+1 FALSE correct Error found violation witness was confirmed.
-16 FALSE incorrect Error reported for a correct program.
+2 TRUE correct Correctness reported and validated.
-32 TRUE incorrect Correctness reported but error was present.

7

COMP6131 Software Security Analysis 2025



SVF-SVC in SV-COMP 2025
• In the 2025 competition, SVF-SVC participated in SV-COMP for the first time.

• We built a Python wrapper around SVF which translated C files into an
appropriate input format for SVF.

• We used the specification category information to call SVF with the appropriate
flags.

• We interpreted SVF’s output to generate witnesses using a basic format.

Program

Property File

Category
Tweaks Clang

Abstract
Execution

SABER

Output
Interpretation

Witness
and Verdict

Strategy

SVF

OutputInputs

LLVMC
C

LTL
bit code

• SVF-SVC qualified for the competition and our short tooling paper was
published in TACAS 2025:
https://link.springer.com/chapter/10.1007/978-3-031-90660-2_21

8

COMP6131 Software Security Analysis 2025

https://link.springer.com/chapter/10.1007/978-3-031-90660-2_21


SVF-SVC in SV-COMP 2025
• In the 2025 competition, SVF-SVC participated in SV-COMP for the first time.

• We built a Python wrapper around SVF which translated C files into an
appropriate input format for SVF.

• We used the specification category information to call SVF with the appropriate
flags.

• We interpreted SVF’s output to generate witnesses using a basic format.

Program

Property File

Category
Tweaks Clang

Abstract
Execution

SABER

Output
Interpretation

Witness
and Verdict

Strategy

SVF

OutputInputs

LLVMC
C

LTL
bit code

• SVF-SVC qualified for the competition and our short tooling paper was
published in TACAS 2025:
https://link.springer.com/chapter/10.1007/978-3-031-90660-2_21

8

COMP6131 Software Security Analysis 2025

https://link.springer.com/chapter/10.1007/978-3-031-90660-2_21


SVF-SVC in SV-COMP 2025
• In the 2025 competition, SVF-SVC participated in SV-COMP for the first time.

• We built a Python wrapper around SVF which translated C files into an
appropriate input format for SVF.

• We used the specification category information to call SVF with the appropriate
flags.

• We interpreted SVF’s output to generate witnesses using a basic format.

Program

Property File

Category
Tweaks Clang

Abstract
Execution

SABER

Output
Interpretation

Witness
and Verdict

Strategy

SVF

OutputInputs

LLVMC
C

LTL
bit code

• SVF-SVC qualified for the competition and our short tooling paper was
published in TACAS 2025:
https://link.springer.com/chapter/10.1007/978-3-031-90660-2_21

8

COMP6131 Software Security Analysis 2025

https://link.springer.com/chapter/10.1007/978-3-031-90660-2_21


SVF-SVC in SV-COMP 2026
• We are looking to participate again, this time with your help!

• We are redesigning the SVF-SVC to allow our wrapper to support assignment
style inputs and outputs.

• We aim to more extensively support SV-COMP test cases and provide more
robust witness formats.

• We are looking for groups of students to compete with the SVF-SVC team to:
• Reduce the number of incorrect assertions rather than UNKNOWN outputs

made to address the harsh penalties associated with incorrect results.
• Expand SVF-SVC to compete in more categories.
• Better utilise our time given the competition constraints.
• Optimize or add to existing algorithms to improve overall performance.

• Expected deadlines:
• October 2025: Tool registration.
• November 2025: Final tool submission.
• December 2025: Paper submission.
• January 2026: Paper notification and final edits.

9

COMP6131 Software Security Analysis 2025



SVF-SVC in SV-COMP 2026
• We are looking to participate again, this time with your help!
• We are redesigning the SVF-SVC to allow our wrapper to support assignment

style inputs and outputs.
• We aim to more extensively support SV-COMP test cases and provide more

robust witness formats.

• We are looking for groups of students to compete with the SVF-SVC team to:
• Reduce the number of incorrect assertions rather than UNKNOWN outputs

made to address the harsh penalties associated with incorrect results.
• Expand SVF-SVC to compete in more categories.
• Better utilise our time given the competition constraints.
• Optimize or add to existing algorithms to improve overall performance.

• Expected deadlines:
• October 2025: Tool registration.
• November 2025: Final tool submission.
• December 2025: Paper submission.
• January 2026: Paper notification and final edits.

9

COMP6131 Software Security Analysis 2025



SVF-SVC in SV-COMP 2026
• We are looking to participate again, this time with your help!
• We are redesigning the SVF-SVC to allow our wrapper to support assignment

style inputs and outputs.
• We aim to more extensively support SV-COMP test cases and provide more

robust witness formats.
• We are looking for groups of students to compete with the SVF-SVC team to:

• Reduce the number of incorrect assertions rather than UNKNOWN outputs
made to address the harsh penalties associated with incorrect results.

• Expand SVF-SVC to compete in more categories.
• Better utilise our time given the competition constraints.
• Optimize or add to existing algorithms to improve overall performance.

• Expected deadlines:
• October 2025: Tool registration.
• November 2025: Final tool submission.
• December 2025: Paper submission.
• January 2026: Paper notification and final edits.

9

COMP6131 Software Security Analysis 2025



SVF-SVC in SV-COMP 2026
• We are looking to participate again, this time with your help!
• We are redesigning the SVF-SVC to allow our wrapper to support assignment

style inputs and outputs.
• We aim to more extensively support SV-COMP test cases and provide more

robust witness formats.
• We are looking for groups of students to compete with the SVF-SVC team to:

• Reduce the number of incorrect assertions rather than UNKNOWN outputs
made to address the harsh penalties associated with incorrect results.

• Expand SVF-SVC to compete in more categories.
• Better utilise our time given the competition constraints.
• Optimize or add to existing algorithms to improve overall performance.

• Expected deadlines:
• October 2025: Tool registration.
• November 2025: Final tool submission.
• December 2025: Paper submission.
• January 2026: Paper notification and final edits.

9

COMP6131 Software Security Analysis 2025



SVF-SVC in SV-COMP 2026

Why should I participate?
• The competition provides an excellent opportunity to apply the skills

developed in this course and work on a real-world application.
• The competition allows the opportunity to make a research publication which

is greatly beneficial for any future research work or career in academia.
• The competition involves working as part of a team on a software project

which looks excellent on your resume when applying for computer science,
software engineering or cybersecurity related roles.

• You will improve your ability to program, design algorithms, interface with
real-world systems and collaborate and work with a team.

10

COMP6131 Software Security Analysis 2025



SVF-SVC in SV-COMP 2026
How can I participate?

• Further details about the competition will be given in future weeks.
• Completing COMP6131 will give you all the prerequisite knowledge required

for the competition.
• Expected Timeline:

• Term 2 2025: Continue learning the foundations from COMP6131.
• Term 2-3 break 2025: Organise the team, plan out the project, begin

implementation.
• Term 3: Continue and complete implementation.
• Summer break 2025-26: Receive competition results.

• We are looking for students who can make some commitment in the Term 2-3
break and/or Term 3.

• Contact me now or by the end of term 2 at cameron.mcgowan@unsw.edu.au
to let me know if you are interested in participating this year or would like
further details.

11

COMP6131 Software Security Analysis 2025

cameron.mcgowan@unsw.edu.au

