
COMP1511 - Programming 
Fundamentals

Term 3, 2019 - Lecture 13



What did we cover last week?
Pointers and Memory

● Pointers are variables that store memory addresses 
● They allow us to access variables from anywhere in our code

Structs

● Custom variables made up of collections of variables
● Able to store different types of variables



What are we covering today?
Memory

● How functions work in memory
● Direct use of memory in C

Multi-File Projects

● Using more than one file for a program
● Using files to hide some information and provide a useful interface



Recap - Pointers
Pointers

● A pointer is a variable that stores a memory address (& to get an address)
● We can assign a memory address to a pointer
● We can access the memory the pointer is "aiming at" using *

    int i = 100;
    // create a pointer called ip that points at
    // the location of i
    int *ip = &i;
    printf("The value of the variable at %p is %d", ip, *ip);



Recap - Structs
Structs

● A struct is a collection of variables that can be accessed under one name
● They're used to collect custom information together

struct bender {
    char name[MAX_LENGTH];
    char element[MAX_LENGTH];
    int power;
    int health;
};



Recap - Pointers and Structs
We often use pointers and structs together

● We use -> to access fields when we have a pointer to a struct
● We often pass pointers to structs into functions

void display_person(struct bender *person) {
    printf("Name: %s\n", person->name);
    printf("Element: %s\n", person->element);
    printf("Power: %d\n", person->power);
    printf("Health: %d\n", person->health);    
}



Functions and Memory
What actually gets passed to a function?

● Everything gets passed "by value"
● Variables are copied by the function
● The function will then work with their own versions of the variables



What happens to variables passed to functions?
int main (void) {
    int x = 5;
    doubler(x);
    printf("x is %d.\n", x,);
    // "x is 5"
    // this is because the doubler function takes the value 5 from x
    // and copies it into the variable "number" which is a new variable
    // that only lasts as long as the doubler function runs
}

void doubler(int number) {
    number = number * 2;
}



Functions and Pointers
What happens to pointers that are 
passed to functions?

● Everything gets passed "by value"
● But the value of a pointer is a 

memory address!
● The memory address will be copied 

into the function
● This means both pointers are 

accessing the same variable!
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Functions and Pointers
int main (void) {
    int x = 5;
    int *pointerX = &x;
    doublePointer(pointerX);
    printf("x is %d.\n", x);
    // "x is 10"
    // This is because doublePointer gets given access to x via its
    // copied pointer . . . since it changes what's at the other end of
    // that pointer, it affects x
}

// Double the value of the variable the pointer is aiming at
void doublePointer(int *numPointer) {
    *numPointer = *numPointer * 2;
}



Arrays are represented as pointers
Arrays and pointers are very similar

● An array is a variable
● It's not actually a variable containing all 

the elements
● When we use the array variable (no []), 

it's actually the memory address of the 
start of the elements

● Arrays and pointers act the same! 
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Functions and Arrays
int main (void) {    
    int myNums[3] = {1,2,3};
    doubleAll(3, myNums);
    printf("Array is: ");
    int i = 0;
    while(i < 3) {
        printf("%d ", myNums[i]);
        i++;
    }
    printf("\n");
    // "Array is 2 4 6"
    // Since passing an array to a function will pass the address
    // of the array, any changes made in the function will be made
    // to the original array
}



Functions and Arrays continued

// Double all the elements of a given array
void doubleAll(int length, int numbers[]) {
    int i = 0;
    while(i < length) {
        numbers[i] = numbers[i] * 2;
        i++;
    }
}



Memory in Functions
What happens to variables we create inside functions?
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Memory in Functions
What happens to variables we create inside functions?

4. A program's memory (not to 
scale) after a function ends
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Keeping memory available
What if we want to create something in a function?

● We often want to run functions that create data
● We can't always pass it back as an output

// Make an array and return its address
int *createArray() {
    int numbers[10] = {0};
    return numbers;
}
// This example will return a pointer to memory that we no longer have!



Memory Allocation
C has the ability to allocate memory

● A function called malloc(bytes) returns a pointer to memory
● Allows us to take control of a block of memory

● This won't automatically be cleaned up when a function ends
● To clean up the memory, we call free(pointer)
● free() will use the pointer to find our previous memory to clean it up



What malloc() does
Using malloc, we can assign some memory that is not tied to a function
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Malloc() in code
We can assign a particular amount of memory for use

● The function sizeof() allows us to see how many bytes a variable needs
● We can use sizeof() to allocate the correct amount of memory

// Allocate memory for a number and return a pointer to them
int *mallocNumber() {
    int *intPointer = malloc(sizeof(int));
    *intPointer = 10;
    return intPointer;
}
// This example will return a pointer to memory we can use



Cleaning up after ourselves
Allocated memory is never cleaned up automatically

● We need to remember to use free()
● Every pointer that is aimed at allocated memory must be freed!

// Use an allocated variable via its pointer then free it
int main(void) {
    int *iPointer = mallocNumber();
    
    *iPointer += 25;

    free(iPointer);
    return 0;
}



Freeing up memory
Calling free will clean up the allocated memory that we're finished with
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Using memory
Some things to think about with malloc() and free()

● You can use sizeof() to figure out how many bytes something needs
● We can malloc arrays and structs as well as variables
● In general, always use sizeof() with malloc()

● Anything allocated with malloc() must be free() after you've finished 
with it

● Otherwise we get what's known as memory leaks!
● dcc --leak-check can be used to tell you if you have any memory leaks



Break Time
Memory allocation is tricky

● It's easy to forget what 
you've allocated

● Then you might forget to 
free it!



C Projects with Multiple Files
For readability and also to separate code by subject

● We've already seen #include
● We can also #include our own files!
● This allows us to join projects together

Reusable sub-projects

● We'll often make some code that we can use again
● If we make it in its own file, with its own interface, we can #include it in 

our projects



Header Files and C (Implementation) Files
Two different files for different purposes

● Header and C files usually go together in pairs

Header *.h file

● Shows the capabilities of a code file
● Enough to use it without needing to understand what's in it

C Implementation *.c file

● Contains the underlying implementation of the H file



File.h
Header Files show you what the code's functions are

● This file shows a programmer all they need to know to use our code
● typedef (Type Define) is a way of allowing us to create our own C Type 

out of another Type
● This protects our struct from access and keeps our data safe!
● Function Declarations with no definitions
● Comments that describe how the functions can be used
● No running code!



File.c
Implementation Files show you how the code runs in detail

● We can hide the complicated running code in this file
● Has includes, especially #include "File.h" (joins the two files 

together)
● Implements the struct mentioned in the typedef from the header
● Implements all the functions declared in the header



Main.c and other Files
Our Entry Point into our code

● The main function is always what runs first
● For any code file (*.c) to use the functionality provided by another file, it 

must #include that file
● In our example, main.c needs to include person.h to be able to access the 

functionality provided by the person code



Compiling a Project with Multiple Files
How do we compile multi-file project?

● We need to compile all *.c files that we will use
● The *.c files will #include the necessary *.h files
● Amongst the *.c files there should be exactly one main() function
● The compiled program will run from the start of the main() function



Let's look at a multi-file project
I'm Batman!

● A set of files that allow us to define a "person"
● Each person has a name and some super powers
● But also, they have a pointer to their secret identity!
● person.h shows how we can use a person
● person.c has the underlying details
● main.c shows how we can include and use this code



person.h
What's in the Header file?

● A Typedef saying we can use Person to mean a pointer to a struct 
person

● No mention of what struct person is! We don't have direct access
● Functions to let us create and free a person
● A function to let us give powers to a person
● A function to display a person (by printing to the terminal)



person.c
Our implementation file

● The actual and hidden implementation of struct person
● This means that the code in the C file can use struct person but the 

main.c can only use Person

● Implementations of all the functions listed in person.h



main.c
The main file

● Contains the main function. There is always exactly one main function in 
any project. It will be where the program starts running

● #includes the person.h file (always include headers, but not C files)
● Uses things like Person and the functions provided in the header



Using the multi-file project
Compiling

● We'll compile all the C files (but no H files) into a single program
● We rely on #includes to get the information we need from H files
● In this case: dcc main.c person.c -o person_demo

Using Multi-file projects in COMP1511

● We will be keeping these reasonably simple in COMP1511
● Assignment 2 will have a multi-file project, but you will not need to create 

a multi-file project to pass this course



What did we learn today?
Functions and Memory

● How functions have their own piece of memory
● How we lose access to anything in a function once it returns
● How we can specifically allocate memory

Multi-File Projects

● How C separates functionality in a Header and C (Implementation) file
● How we can include our own files
● How headers make it easier to read what a set of files can do


