
Week 2 1

Assembly

Programming (II)

Lecturer: Sri Parameswaran

Notes by: Annie Guo

Week 2 2

Lecture overview

⚫ Assembly program structure

⚫ Assembler directives

⚫ Assembler expressions

⚫ Macro

⚫ Memory access

⚫ Assembly process

⚫ First pass

⚫ Second pass

Week 2 3

Assembly program structure

⚫ An assembly program basically consists of

⚫ Assembler directives

⚫ E.g. .def temp = r15

⚫ Executable instructions

⚫ E.g. add r1, r2

⚫ An input line in an assembly program takes
one of the following forms :

⚫ [label:] directive [operands] [Comment]

⚫ [label:] instruction [operands] [Comment]

⚫ Comment

⚫ Empty line

Week 2 4

Assembly program structure

(cont.)

⚫ The label for an instruction is associated with

the memory location address of that

instruction.

⚫ All instructions are not case sensitive

⚫ “add” is same as “ADD”

⚫ “.DEF” is same as “.def”

Week 2 5

Example

; The program performs

; 2-byte addition: a+b;

.def a_high = r2;

.def a_low = r1;

.def b_high = r4;

.def b_low = r3;

.def sum_high = r6;

.def sum_low = r5;

mov sum_low, r1

mov sum_high, r3

add sum_low, r2

adc sum_high, r3

Two comment lines

Empty line

Six assembler directives

Four executable instructions

Week 2 6

Comments

⚫ A comment has the following form:

⚫ ;[Text]

⚫ Items within the brackets are optional

⚫ The text between the comment-delimiter(;)

and the end of line (EOL) is ignored by the

assembler.

Week 2 7

Assembly directives

⚫ Instructions to the assembler are created for
a number of purposes:

⚫ For symbol definitions

⚫ For readability and maintainability

⚫ All symbols used in a program will be replaced by the
real values when assembling

⚫ E.g. .def, .set

⚫ For program and data organization

⚫ E.g. .org, .cseg, .dseg

⚫ For data/variable memory allocation

⚫ E.g. .DB

⚫ For others

Week 2 8

NOTE: All directives must be preceded by a period

Summary of

AVR Assembler

directives

Week 2 9

Directives for symbol

definitions

⚫ .DEF

⚫ Define symbols on registers

⚫ E.g.

.def temp=r17

⚫ Symbol temp can be used for r17 elsewhere in the

program after the definition

.DEF symbol = register

Week 2 10

Directives for symbol

definitions (cont.)

⚫ .EQU

⚫ Define symbols on values

⚫ Non-redefinable. The symbol cannot be redefined for

other value in the program

⚫ E.g.

.EQU length=2

⚫ Symbol length with value 2 can be used elsewhere in

the program after the definition

.EQU symbol = expression

Week 2 11

Directives for symbol

definitions (cont.)

⚫ .SET

⚫ Define symbols on values

⚫ re-definable . The symbol can represent other value

later.

⚫ E.g.

.set input=5

⚫ Symbol input with value 5 can be used elsewhere in

the program after this definition and before its

redefinition.

.SET symbol = expression

Week 2 12

Program/data memory

organization

⚫ AVR has three different memories

⚫ Data memory

⚫ Program memory

⚫ EPROM memory

⚫ The three memories are corresponding to

three memory segments to the assembler:

⚫ Data segment

⚫ Program segment (or Code segment)

⚫ EEPROM segment

Week 2 13

Program/data memory

organization directives

⚫ Memory segment directives specify which

memory segment to use

⚫ .DSEG

⚫ Data segment

⚫ .CSEG

⚫ Code segment

⚫ .ESEG

⚫ EPROM segment

⚫ The .ORG directive specifies the start

address to store the related program/data.

Week 2 14

Example
.DSEG ; Start data segment

.ORG 0x100 ; from address 0x100,

; default start location is 0x0060

vartab: .BYTE 4 ; Reserve 4 bytes in SRAM

; from address 0x100

.CSEG ; Start code segment

; default start location is 0x0000

const: .DW 10, 0x10, 0b10, -1

; Write 10, 16, 2, -1 in program

; memory, each value takes

; 2 bytes.

mov r1,r0 ; Do something

Week 2 15

Data/variable memory

allocation directives

⚫ Specify the memory locations/sizes for

⚫ Constants

⚫ In program/EEPROM memory

⚫ Variables

⚫ In data memory

⚫ All directives must start with a label so that
the related data/variable can be accessed
later.

Week 2 16

Directives for Constants

⚫ Store data in program/EEPROM memory

⚫ .DB

⚫ Store byte constants in program/EEPROM memory

▪ expr* is a byte constant value

⚫ .DW

⚫ Store word constants in program/EEPROM memory

⚫ little endian rule is used

▪ expr* is a word constant value

Label: .DB expr1, expr2, …

Label: .DW expr1, expr2, …

Week 2 17

Directives for Variables

⚫ Reserve bytes in data memory

⚫ .BYTE

⚫ Reserve a number of bytes for a variable

⚫ expr is the number of bytes to be reserved.

Label: .BYTE expr

Week 2 18

Directives for Others

⚫ Include a file

⚫ .INCLUDE “m64def.inc”

⚫ Stop processing the assembly file

⚫ .EXIT

⚫ Begin and end macro definition

⚫ .MACRO

⚫ .ENDMACRO

⚫ Will be discussed in detail later

Week 2 19

Implement data/variables

⚫ With those directives, you can

implement/translate data/variables into

machine level descriptions

⚫ An example of translation by WINAVR is

given in the next slide.

Week 2 20

Sample C program
// global variables:
const char g_course[] = "COMP";
char* g_inputCourse = "COMP";
char g_a;
static char g_b;

int main(void){
// local variables:
const char course[] = "COMP9032";
char* inputCourse = "COMP9031";
char a;
static char b;
char i;
char isCOMP9032 = 1;

for(i=0; i<9; i++){
if (inputCourse[i] != course[i]){

isCOMP9032 = 0;
i = 9;

}
}
return 0;

Week 2 21

Memory mapping after build and

run

Week 2 22

Memory mapping after

execution

Week 2 23

Memory mapping diagram
0x0100

0x0104

0x0105

0x0109

0x010A

g_course

Constants

g_inputCourse

pointer (g_inputCourse)

0x010B

0x0115

0x011D

inputCourse

0x011E

0x011F

0x0120

b

g_b

g_a
i

a

pointer (inputCourse)

course

constants

0x10FE

0x10FD

0x10FA

0x10FAB

RAMEND

0x10F2

0x10FAC

Static data

Dynamic data

isCOMP9032

Week 2 24

Remarks

⚫ Data have scope and duration in the program

⚫ Data have types and structures

⚫ Those features determine where and how to
store data in memory.

⚫ Constants are usually stored in the non-
volatile memory and variables are allocated
in SRAM memory.

⚫ In this lecture, we will only take a look at how
to implement basic data type.

⚫ Advanced data/variable implementation will be
covered later.

Week 2 25

Example 1

⚫ Translate the following C variables. Assume

each integer takes four bytes.

int a;

unsigned int b;

char c;

char* d;

Week 2 26

Example 1: solution

⚫ Translate the following variables. Assume
each integer takes four bytes.

⚫ All variables are allocated in SRAM

⚫ Labels are given the same name as the variable
for convenience.

.dseg ; in data memory

.org 0x100 ; start from address 0x100

a: .byte 4 ; 4 byte integer

b: .byte 4 ; 4 byte unsigned integer

c: .byte 1 ; 1 character

d: .byte 2 ; address pointing to the string

Week 2 27

Example 2
⚫ Translate the following C constants and

variables.

⚫ All variables are in SRAM and constants are in FLASH

int a;

const char b[]=“COMP9032”;

const int c=9032;

.dseg

.org 0x100

a: .byte 4

.cseg

b: .DB ‘C’, ‘O’, ‘M’, ‘P’, ‘9’, ‘0’, ‘3’, ‘2’, 0

C: .DW 9032

C code:

Assembly

code:

Week 2 28

Example 2 (cont.)

⚫ An insight of the memory mapping

⚫ In program memory, data are packed in words. If

only a single byte left, that byte is stored in high

byte and the low byte is filled with 0.

0x0000

0x0001

0x0002

0x0003

0x0004

0x0005

‘C’ ‘O’

‘M’ ‘P’

‘9’ ‘0’

‘3’ ‘2’

0 0

9032

43 4F

4D 50

39 30

33 32

0 0

48 23

Hex values

Week 2 29

Example 3

⚫ Translate data structures
struct

{

int student_ID;

char name[20];

char WAM;

} STUDENT_RECORD;

typedef struct STUDENT_RECORD *student;

student s1;

student s2;

Week 2 30

Example 3 : solution

⚫ Translate data structures

.set student_ID=0

.set name = student_ID+4

.set WAM = name + 20

.set STUDENT_RECORD_SIZE = WAM + 1

.dseg

s1: .BYTE STUDENT_RECORD_SIZE

s2: .BYTE STUDENT_RECORD_SIZE

Week 2 31

Example 4

⚫ Translate data structures

⚫ `with initialization

struct

{

int student_ID;

char name[20];

char WAM;

} STUDENT_RECORD;

typedef struct STUDENT_RECORD *student;

student s1 = {123456, “John Smith”, 75};

student s2;

Week 2 32

Example 4: solution

⚫ Translate data structures
.set student_ID=0

.set name = student_ID+4

.set WAM = name + 20

.set STUDENT_RECORD_SIZE = WAM + 1

.cseg

s1_value: .DW HWRD(123456)

.DW LWRD(123456)

.DB “John Smith”

.DB 75

.dseg

s1: .BYTE STUDENT_RECORD_SIZE

s2: .BYTE STUDENT_RECORD_SIZE

Week 2 33

Remarks

⚫ The constant values for initialization are

stored in the program memory in order to

keep the values when power is off.

⚫ The variable will be populated with the initial

values when the program is started.

Week 2 34

Assembler expression

⚫ In the assembly program, you can use

expressions for values.

⚫ When assembly, the assembler evaluates

each expression and replaces the expression

with the related value.

Week 2 35

Assembler expression (cont.)

⚫ The expression is of the form similar to

normal math expressions

⚫ Consisting of operands, operators and functions.

All expressions are internally 32 bits.

⚫ Example
ldi r26, low(label + 0xff0)

Function Operands Operator

Week 2 36

Operands

⚫ Operands can be

⚫ User defined labels

⚫ associated with memory addresses

⚫ User defined variables

⚫ defined by the SET directive

⚫ User defined constants

⚫ defined by the EQU directive

⚫ Integer constants

⚫ can be in several formats, including
▪ Decimal (default): 10, 255

▪ Hexadecimal (two notations): 0x0a, $0a, 0xff, $ff

▪ Binary: 0b00001010, 0b11111111

▪ Octal (leading zero): 010, 077

⚫ PC

⚫ Program counter value.

Week 2 37

Operators Symbol Description
! Logical Not
~ Bitwise Not
- Unary Minus
* Multiplication
/ Division
+ Addition
- Subtraction
<< Shift left
>> Shift right
< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
== Equal
!= Not equal
& Bitwise And
^ Bitwise Xor
| Bitwise Or
&& Logical And
|| Logical Or

Same

meanings

as in C

Week 2 38

Functions
⚫ LOW(expression)

▪ Returns the low byte of an expression

⚫ HIGH(expression)
▪ Returns the second byte of an expression

⚫ BYTE2(expression)
▪ The same function as HIGH

⚫ BYTE3(expression)
▪ Returns the third byte of an expression

⚫ BYTE4(expression)
▪ Returns the fourth byte of an expression

⚫ LWRD(expression)
▪ Returns bits 0-15 of an expression

⚫ HWRD(expression):
▪ Returns bits 16-31 of an expression

⚫ PAGE(expression):
▪ Returns bits 16-21 of an expression

⚫ EXP2(expression):
▪ Returns 2 to the power of expression

⚫ LOG2(expression):
▪ Returns the integer part of log2(expression)

Week 2 39

Example 1

;Example1:

ldi r17, 1<<5 ;load r17 with 1

;shifted left 5 times

Week 2 40

Example 2

;Example 2: compare r1:r0 with 3167

cpi r0, low(3167)

ldi r16, high(3167)

cpc r1, r16

brlt case1

…

case1: incr10

Week 2 41

Macros

⚫ A sequence of instructions in an assembly

program often need to be repeated several

times

⚫ Macros help programmers to write code

efficiently and nicely

⚫ Type/define a section code once and reuse it

⚫ Neat representation

⚫ like an inline function in C

⚫ When assembled, the macro definition is expanded at

the place it was used.

Week 2 42

Detectives for Macros

⚫ .MACRO

⚫ Tells the assembler that this is the start of a

Macro

⚫ Takes the macro name and other parameters

⚫ Up to 10 parameters

▪ Which are referenced by @0, …@9 in the macro definition

body

⚫ .ENDMACRO

⚫ Defines the end of a Macro definition.

Week 2 43

Macros (cont.)

⚫ Macro definition structure:

⚫ Use of Macro

.MACRO name

;macro body

.ENDMACRO

macro_name [para0, para1, …,para9]

Week 2 44

Example 1

⚫ Swapping memory data p, q twice
With macro

.macro swap1

lds r2, p ; load data

lds r3, q ; from p, q

sts q, r2 ; store data

sts p, r3 ; to q, p

.endmacro

swap1

swap1

Without macro

lds r2, p

lds r3, q

sts q, r2

sts p, r3

lds r2, p

lds r3, q

sts q, r2

sts p, r3

Week 2 45

Example 2

⚫ Swapping any two memory data
.macro swap2

lds r2, @0 ; load data from provided

lds r3, @1 ; two locations

sts @1, r2 ; interchange the data and

sts @0, r3 : store data back

.endmacro

swap2 a, b ;a is @0, b is @1

swap2 c, d ;c is @0, d is @1

Week 2 46

Example 3

⚫ Register bit copy
⚫ copy a bit from one register to a bit of another

register
.macro bitcopy

bst @0, @1

bld @2, @3

.endmacro

bitcopy r4, 2, r5, 3

bitcopy r5, 4, r7, 6

end: rjmp end

Week 2 47

Memory access operations

⚫ Access to data memory

⚫ Using instructions

⚫ ld, lds, st, sts

⚫ Access to program memory

⚫ Using instructions

⚫ lpm

⚫ spm

▪ Not covered in this course

⚫ Most of time, we access program memory to load

data

Week 2 48

Load Program Memory

⚫ Syntax: lpm Rd, Z

⚫ Operands: Rd{r0, r1, …, r31}

⚫ Operation: Rd (Z)

⚫ Z Z +1

⚫ Words: 1

⚫ Cycles: 3

Week 2 49

Load from program memory

⚫ The address label in the memory program is

word address

⚫ Used by the PC register

⚫ To access data, the byte address is used.

⚫ Address register, Z, is used to point bytes in

the program memory

Week 2 50

Example

.include “m64def.inc” ; include definition for Z

ldi ZH, high(Table_1<<1) ; Initialize Z-pointer

ldi ZL, low(Table_1<<1)

lpm r16, Z ; Load constant from Program

; memory pointed to by Z (r31:r30)

Table_1:

.dw 0x5876 ; 0x76 is the value when ZLSB = 0

; 0x58 is the value when ZLSB = 1

Week 2 51

Complete example 1

⚫ Copy data from Program memory to Data

memory

Week 2 52

Complete example 1 (cont.)

⚫ C description

struct

{

int student_ID;

char name[20];

char WAM;

} STUDENT_RECORD;

typedef struct STUDENT_RECORD *student;

student s1 = {123456, "John Smith", 75};

Week 2 53

Complete example 1 (cont.)
⚫ Assembly translation

.set student_ID=0

.set name = student_ID+4

.set WAM = name + 20

.set STUDENT_RECORD_SIZE = WAM + 1

.cseg

s1_value: .DW HWRD(123456)

.DW LWRD(123456)

.DB "John Smith"

.DB 75

start: ldi r31, high(s1_value<<1) ;pointer to student record

ldi r30, low(s1_value<<1) ;value in the program memory

ldi r29, high(s1) ;pointer to student record holder

ldi r28, low(s1) ;in the data memory

clr r16

Week 2 54

Complete example 1 (cont.)

⚫ Assembly translation (cont.)

load:

cpi r16, STUDENT_RECORD_SIZE

brge end

lpm r10, z+

st y+, r10

inc r16

rjmp load

end:

rjmp end

.dseg

.ORG 0x100

s1: .BYTE STUDENT_RECORD_SIZE

Week 2 55

Complete example 2

⚫ Convert lower-case to upper-case for a string

⚫ The string is stored in the program memory

⚫ The resulting string after conversion is stored in

data memory.

⚫ In ASCII, upper case letter + 32 = low case letter

Week 2 56

Complete example 2 (cont.)

⚫ Assembly program
.include "m64def.inc"

.equ size =5

.def counter =r17

.dseg

.org 0x100 ; Set the starting address

; of data segment to 0x100

Cap_string: .byte 5

.cseg

Low_string: .db "hello"

ldi zl, low(Low_string<<1) ; Get the low byte of

; the address of "h"

ldi zh, high(Low_string<<1) ; Get the high byte of

; the address of "h"

ldi yh, high(Cap_string)

ldi yl, low(Cap_string)

clr counter ; counter=0

Week 2 57

Complete example 2 (cont.)

⚫ Assembly program (cont.)

main:

lpm r20, z+ ; Load a letter from flash memory

subi r20, 32 ; Convert it to the capital letter

st y+,r20 ; Store the capital letter in SRAM

inc counter

cpi counter, size

brlt main

loop: nop

rjmp loop

Week 2 58

Assembly

⚫ Assembly programs need to be converted to

machine code before execution

⚫ This translation/conversion from assembly

program to machine code is called assembly and

is done by the assembler

⚫ There are two steps in the assembly

processes:

⚫ Pass one

⚫ Pass two

Week 2 59

Two Passes in Assembly

⚫ Pass one

⚫ Lexical and syntax analysis: checking for syntax

errors

⚫ Record all the symbols (labels etc) in a symbol

table

⚫ Expand macro calls

⚫ Pass Two

⚫ Use the symbol table to substitute the values for

the symbols and evaluate functions.

⚫ Assemble each instruction

⚫ i.e. generate machine code

Week 2 60

Example

.equ bound=5

clr r10

loop:

cpi r16, bound

brlo end

inc r10

rjmp loop

end:

rjmp end

Symbol tableAssembly program

Symbol Value

bound 5

loop 1

end 5

Week 2 61

Example (cont.)

Address Code Assembly statement

00000000: 24AA clr r10

00000001: 3005 cpi r16,0x05

00000002: F010 brlo PC+0x03

00000003: 94A3 inc r10

00000004: CFFC rjmp PC-0x0003

00000005: CFFF rjmp PC-0x0000

Code generation

Week 2 62

Absolute Assembly

⚫ A type of assembly process.

⚫ Can only be used for the source file that contains

all the source code of the program

⚫ Programmers use .org to tell the assembler

the starting address of a segment (data

segment or code segment)

⚫ Whenever any change is made in the

source program, all code must be assembled.

⚫ A loader transfers an executable file

(machine code) to the target system.

Week 2 63

Absolute Assembly

-- workflow
Source file with location

information (NAME.ASM)

Absolute

assembler

Executable file

(NAME.EXE)

Loader Program

Computer

memory

Week 2 64

Relocatable Assembly

⚫ Another type of assembly process.

⚫ Each source file can be assembled

separately

⚫ Each file is assembled into an object file

where some addresses may not be resolved

⚫ A linker program is needed to resolve all

unresolved addresses and make all object

files into a single executable file

Week 2 65

Source file 1

(MODULE1.ASM

Source file 2

(MODULE1.ASM

Relocatable

assembler

Relocatable

assembler

Object file1

(MODULE1.OBJ
Object file2

(MODULE2.OBJ

Linker

program

Library of object

files (FILE.LIB)

Executable file

(NAME.EXE)

Code and data

location

information

Relocatable Assembly

-- workflow

Week 2 66

Homework

1. Refer to the AVR Instruction Set manual, study the
following instructions:

• Arithmetic and logic instructions

⚫ clr

⚫ inc, dec

• Data transfer instructions

⚫ movw

⚫ sts, lds

⚫ lpm

⚫ bst, bld

⚫ Program control

⚫ jmp

⚫ sbrs, sbrc

Week 2 67

Homework

2. Design a checking strategy that can find the

endianness of AVR machine.

3. Discuss the advantages of using Macros. Do

Macros help programmer write an efficient

code? Why?

Week 2 68

Homework

4. Write an assembly program to find the length

of a string. The string is stored in the program

memory and the length will be stored in the

data memory.

Week 2 69

Homework

5. Write an assembly program to find the student

average WAM in a class. The record for each

student is defined as

Assume there are 5 students and all records are

stored in the program memory. The average WAM

will be stored in the data memory.

struct

{

int student_ID;

char name[20];

char WAM;

} STUDENT_RECORD;

typedef struct STUDENT_RECORD *student;

Week 2 70

Reading Material

⚫ Chap. 5. Microcontrollers and

Microcomputers

⚫ User’s guide to AVR assembler

⚫ This guide is a part of the on-line documentations

accompanied with AVR Studio. Click help in AVR

Studio.

