
COMP4418: Knowledge Representation
and Reasoning
Prolog I

Maurice Pagnucco
School of Computer Science and Engineering

COMP4418, Week 3

1

Prolog

• Prolog — Programming in Logic
• Invented early 70s by Alain Colmeraurer et al., University of Marseille
• Declarative language

◦ Specify goal and interpreter/compiler will work out how to achieve it
◦ Traditional (imperative) languages require you to specify how to solve problem

• Prolog program specifies:
◦ facts about objects and their relationships
◦ rules about objects and their relationships

Reference: Ivan Bratko, Prolog Programming for Artificial Intelligence,
Addison-Wesley, 2001.

2

Starting Prolog

Good open source Prolog implementation: SWI Prolog
https://www.swi-prolog.org

$ swipl

Welcome to SWI-Prolog (threaded, 64 bits, version 7.4.2)

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software.

Please run ?- license. for legal details.

For online help and background, visit http://www.swi-prolog.org

For built-in help, use ?- help(Topic). or ?- apropos(Word).

?-

3

https://www.swi-prolog.org

Relations

• Prolog programs specify relationships among objects and properties of
objects

• When we say, “John owns the book”, we are declaring the ownership relation
between two objects: John and the book

• When we ask, “Does John own the book?”, we are querying the relationship
• Relationships can also be rules such as:

Two people are sisters if
both are female
they have the same parents

• This is a rule that allows us to find out about a relationship even if the
relationship isn’t explicitly declared

4

Programming in Prolog

• Declare facts describing explicit relationships between objects and properties
of objects

• Define rules describing implicit relationships between objects or implicit object
properties

• Ask questions about relationships between objects and object properties

5

Representing Regulations

The rules for entry into a professional computer science society are set out below:
An applicant to the society is acceptable if he or she has been nominated
by two established members of the society and is eligible under the terms
below:

• the applicant graduated with a university degree
• the applicant has two years of professional experience
• the applicant pays a joining fee of $200.

An established member is one who has been a member for at least two
years.

6

Facts

• Properties of objects; relationshps between objects
• Example

◦ “Maurice lectures in course COMP4418”
◦ Prolog: lectures(maurice, comp4418)

• Notice
◦ Names of properties/relationships begin with lower-case character
◦ Name of relationship appears as first term, objects appear as arguments
◦ Fact terminated by ‘.’
◦ Objects (atoms) also begin with lower-case characters

• lectures(maurice, 4418) also called a predicate

7

Facts

Let us return to the regulations example:

experience(fred, 3).

fee_paid(fred).

graduated(fred, unsw).

university(unsw).

nominated_by(fred, jim).

nominated_by(fred, mary).

joined(jim, 2015).

joined(mary, 2016).

current_year(2021).

8

Prolog Database

A collection of facts about a hypothetical computer science department:

% lectures(X, Y): person X lectures in course Y

lectures(tony, comp1001).

lectures(andrew, comp2041).

lectures(john, comp2041).

lectures(gernot, comp3231).

lectures(arun, comp4141).

lectures(sowmya, comp4411).

lectures(claude, comp4411).

lectures(maurice, comp4418).

lectures(adnan, comp4418).

lectures(adnan, comp9518).

lectures(wayne, comp4418).

lectures(arthur, comp9020).

% studies(X, Y): person X studies course Y

studies(mary, comp1001).

studies(jim, comp1001).

studies(jane, comp4411).

studies(jane, comp4418).

studies(jack, comp9518).

studies(jack, comp9020).

% year(X, Y): person X is in year Y

year(mary, 1).

year(jim, 1).

year(jane, 4).

year(jack, 4).

Together, these facts form Prolog’s database.

9

Queries

• Once we have a database of facts (and, soon, rules) we need to be able to
ask questions of the information that is stored

• lectures(maurice, comp4418)?

• Notice:
◦ Query is terminated by a question mark ‘?’
◦ To determine answer (yes or no), Prolog consults database checking whether

this is a known fact
◦ For example, lectures(bob,comp4418)?
**no

◦ If answer is yes, query succeeded; otherwise, if answer is no, query failed

10

Variables

• Suppose we want to ask, “What subject does John teach?”
• This could be phrased as:

Is there a subject, X, that John teaches?
• The variable X stands for an object that the questioner does not yet know

about
• To answer the question, Prolog has to find the value of X, if it exists
• As long as we do not know the value of the variable, it is said to be unbound
• When a value is found, the variable is bound to that value

11

Variables

• A variable must begin with a capital letter or ‘ ’
• To ask Prolog to find the subject that John teaches, type:

: lectures(john, Subject)?

Subject = comp2041

• To ask which subjects that Adnan teaches, ask:
: lectures(adnan, X)?

X = comp4418

X = comp9518

Prolog can find all possible ways to satisfy a query

12

Conjunction in Queries

• How do we ask, “Does Arthur teach Jack?”
• This can be answered by finding out whether Arthur lectures in a subject that

Jack studies:
lectures(arthur, Subject), studies(jack, Subject)?

• i.e., Arthur lectures in subject, Subject, and Jack studies subject, Subject.
• Subject is a variable
• The question consists of two goals
• To find the answer, Prolog must find a single value for Subject that satisfies

both goals

13

Conjunctions
• Who does Adnan teach:

: lectures(adnan, Subject), studies(Student, Subject)?

Subject = comp4418

Student = jane

Subject = comp9518

Student = jack

• Prolog solves problems by proceedings left to right and then backtracking
• Given the initial query, Prolog tries to solve

lectures(adnan, Subject)

• There are twelve lectures clauses but only two have adnan as first argument
• Prolog chooses the first clause containing a reference to adan i.e.,
lectures(adnan, 4418)

14

Proof Tree

• With Subject = 4418, it then tries to satisfy the next goal, viz
studies(Student, 4418)

• After the solution is found, Prolog retraces its steps and looks for alternative
solutions

• It may now go down the branch containing lectures(adnan, 9518) and try
studies(Student, 9518)

15

Rules

• The previous question can be restated as a general rule:
One person, Teacher teaches another person, Student if
Teacher lectures subject, Subject and
Student studies Subject

• In Prolog this is written as the:
teaches(Teacher, Student) :- % This is a clause

lectures(Teacher, Subject),

studies(Student, Subject).

teaches(adnan, Student)?

• Facts are unit clauses and rules are non-unit clauses

16

Rules
acceptable(Applicant) :-

nominated(Applicant),

eligible(Applicant).

nominated(Applicant) :-

nominated_by(Applicant, Member1),

nominated_by(Applicant, Member2),

Member1 \= Member2,

current_year(ThisYear),

joined(Member1, Year1), ThisYear >= Year1 + 2,

joined(Member2, Year2), ThisYear >= Year2 + 2,.

eligible(Applicant) :-

graduated(Applicant, University), university(University),

experience(Applicant, Experience), Experience >= 2,

fee_paid(Applicant).

17

Clause Syntax

• ‘:-’ means “if” or “is implied by”. Also called “neck”
• The left hand side of the neck is the head
• The right hand side is called the body
• The comma, ‘,’ separating the goals stands for and

more_advanced(Student1, Student2) :-

year(Student1, Year1),

year(Student2, Year2),

Year1 > Year2.

• Note the use of the predefined predicate ‘>’
more_advanced(jane, mary)?

more_advanced(jack, X)?

18

Structures

• Functional terms can be used to construct complex data structures
• E.g., to say that John owns the book Foundation, this may be expressed as:

owns(john, ’Foundation’).

• Often objects have a number of attributes
• A book may have a title and an author:

owns(john, book(’Foundation’, asimov)).

• To be more accurate we should give the author’s family and given names:
owns(john, book(’Foundation’, author(asimov, isaac))).

19

Asking Questions with Structures

• How do we ask:
“What books does John own that were written by someone called “Asimov”?

: owns(john, book(Title, author(asimov, GivenName)))?

Title = Foundation

GivenName = isaac

: owns(john, Book)?

Book = book(Foundation, author(asimov, isaac))

: owns(john, book(Title, Author))?

Title = Foundation

Author = author(asimov, isaac)

20

Databases

• A database of books in a library contains facts of the form:
◦ book(CatNo, Title, author(Family, Given)).
◦ member(MemNo, name(Family, Given), Address).
◦ loan(CatNo, MemNo, Borrowed, Due).

• A member of the library may borrow a book
• A “loan” records:

◦ the catalogue number of the book
◦ the number of the member
◦ the borrow date
◦ the due date

21

Database Structures

• Dates are stored as structures:
date(Year, Month, Day).

• E.g., date(2001, 9, 8) represents 8 September 2001

• Names and addresses are all stored as character strings
• Which books has a member borrowed?
has_borrowed(MemFamily, Title, CatNo) :-

memb(MemNo, name(MemFamily, _), _),

loan(CatNo, MemNo, _, _),

book(CatNo, Title, _).

• Which books are overdue?

22

Overdue Books

later(date(Y, M, D1), date(Y, M, D2)) :- D1 > D2.

later(date(Y, M1, _), date(Y, M2, _)) :- M1 > M2.

later(date(Y1, _, _), date(Y2, _, _)) :- Y1 > Y2.

later(date(2001, 12, 3), date(1999, 8, 3))?

overdue(Today, Title, CatNo, MemFamily) :-

loan(CatNo, MemNo, _, DueDate),

later(Today, DueDate),

book(CatNo, Title, _),

memb(MemNo, name(MemFamily, _), _).

23

Due Date

due_date(date(Y, M1, D), date(Y, M2, D)) :-

M1 < 12,

M2 is M1 + 1.

due_date(date(Y1, 12, D), date(Y2, 1, D)) :-

Y2 is Y1 + 1.

• is accepts two arguments
• The right hand argument must be an evaluable arithmetic expression
• The term is evaluated and unified with the left hand argument
• It is not an assignment statement
• Variables cannot be reassigned values
• Arguments of comparison operators can also be arithmetic expressions

24

