
Transport Layer (contd.)

COMP 3331/9331:
 Computer Networks and

Applications
Week 5

Transport Layer (Continued)
Reading Guide: Chapter 3, Sections: 3.5

 2

Announcements

v  Tutorial 1 in Week 5
§  Problem solving prep for exam

v  Assignment 1
§  Have you started?
§  Do not delay
§  Be careful about plagiarism
§  Read specification thoroughly
§  Post questions on forum

v  Mid-semester Exam in Week 6
§  Monday, 29th August during regular lecture hours
§  Details at end of slide set

Transport Layer (contd.)

Transport Layer

Transport Layer Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

Pipelined protocols

3.5 connection-oriented
transport: TCP
§  segment structure
§  reliable data transfer
§  flow control
§  connection management

3.6 principles of congestion
control

3.7 TCP congestion control

 3

Practice Problem: RDT

Transport Layer

http://www-net.cs.umass.edu/kurose_ross/interactive/rdt22.php

 4

Self Study

Transport Layer

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts
§  range of sequence numbers must be increased
§  buffering at sender and/or receiver

v  two generic forms of pipelined (sliding window)
protocols: go-Back-N, selective repeat

 5

Transport Layer

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
 utilization by a factor of 3!

U sender =
3 x 125

100+125
= 1.67

3L / R
RTT + L / R

=

 6

Transport Layer

Pipelined protocols: overview

Go-back-N:
v  sender can have up to

N unacked packets in
pipeline

v  receiver only sends
cumulative ack
§  doesn’t ack packet if

there’s a gap
v  sender has timer for

oldest unacked packet
§ when timer expires,

retransmit all unacked
packets

Selective Repeat:
v  sender can have up to N

unack’ed packets in
pipeline

v  rcvr sends individual ack
for each packet

v  sender maintains timer

for each unacked packet
§ when timer expires,

retransmit only that
unacked packet

 7

Transport Layer

Go-Back-N: sender
v  k-bit seq # in pkt header
v  “window” of up to N, consecutive unack’ed pkts allowed

v  ACK(n): ACKs all pkts up to, including seq # n - “cumulative
ACK”
§ may receive duplicate ACKs (see receiver)

v  timer for oldest in-flight pkt
v  timeout(n): retransmit packet n and all higher seq # pkts in

window
Applet: http://media.pearsoncmg.com/aw/aw_kurose_network_2/applets/go-back-n/go-back-n.html

 8

Transport Layer

GBN: sender extended FSM

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1]
)

timeout

rdt_send(data)
if (nextseqnum < base+N) {
 sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
 udt_send(sndpkt[nextseqnum])
 if (base == nextseqnum)
 start_timer
 nextseqnum++
 }
else
 refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
 stop_timer
 else
 start_timer

rdt_rcv(rcvpkt) &&
 notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
 && corrupt(rcvpkt)

Λ

 9

Transport Layer

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #
§ may generate duplicate ACKs
§  need only remember expectedseqnum

v  out-of-order pkt:
§  discard (don’t buffer): no receiver buffering!
§  re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)
default

 rdt_rcv(rcvpkt)
 && notcurrupt(rcvpkt)
 && hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =
 make_pkt(expectedseqnum,ACK,chksum)

Λ

GBN: receiver extended FSM

 10

Transport Layer

GBN in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
 (re)send ack1 rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2
send pkt3
send pkt4
send pkt5

X loss

receive pkt4, discard,
 (re)send ack1
receive pkt5, discard,
 (re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

 11

Transport Layer

Selective repeat
v  receiver individually acknowledges all correctly

received pkts
§  buffers pkts, as needed, for eventual in-order delivery

to upper layer
v  sender only resends pkts for which ACK not

received
§  sender timer for each unACKed pkt

v  sender window
§ N consecutive seq #’s
§  limits seq #s of sent, unACKed pkts

Applet: http://media.pearsoncmg.com/aw/aw_kurose_network_3/applets/SelectRepeat/SR.html

 12

Transport Layer

Selective repeat: sender, receiver windows

 13

Transport Layer

Selective repeat

data from above:
v  if next available seq # in

window, send pkt
timeout(n):
v  resend pkt n, restart

timer
ACK(n) in [sendbase,sendbase+N]:
v  mark pkt n as received
v  if n smallest unACKed

pkt, advance window base
to next unACKed seq #

sender
pkt n in [rcvbase, rcvbase+N-1]
v  send ACK(n)
v  out-of-order: buffer
v  in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]
v  ACK(n)
otherwise:
v  ignore

receiver

 14

Transport Layer

Selective repeat in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
 send ack3 rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2

X loss

receive pkt4, buffer,
 send ack4
receive pkt5, buffer,
 send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

record ack4 arrived

record ack5 arrived

Q: what happens when ack2 arrives?

 15

Transport Layer

Selective repeat:
dilemma
example:
v  seq #’s: 0, 1, 2, 3
v  window size=3

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2 X
X
X

will accept packet
with seq number 0

(b) oops!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

receiver can’t see sender side.
receiver behavior identical in both cases!

something’s (very) wrong!

v  receiver sees no
difference in two
scenarios!

v  duplicate data
accepted as new in
(b)

Q: what relationship
between seq # size
and window size to
avoid problem in (b)?

 16

A: window size must be less than
or equal to half the size of the
sequence number space

Observations
v  With sliding windows, it is possible to fully utilize

a link (or path), provided the window size is large
enough. Throughput is ~ (n/RTT)
§  Stop & Wait is like n = 1.

v  Sender has to buffer all unacknowledged packets,
because they may require retransmission

v  Receiver may be able to accept out-of-order
packets, but only up to its buffer limits

v  Implementation complexity depends on protocol
details (GBN vs. SR)

Transport Layer 17

Recap: components of a solution
v  Checksums (for error detection)
v  Timers (for loss detection)
v  Acknowledgments

§ cumulative
§ selective

v  Sequence numbers (duplicates, windows)
v  Sliding Windows (for efficiency)

v  Reliability protocols use the above to decide
when and what to retransmit or acknowledge

Transport Layer 18

v  Which of the following is not true?

A.  GBN uses cumulative ACKs, SR uses individual
ACKs

B.  Both GBN and SR use timeouts to address
packet loss

C.  GBN maintains a separate timer for each
outstanding packet

D.  SR maintains a separate timer for each
outstanding packet

E.  Neither GBN nor SR use NACKs

Transport Layer 19

Quiz: GBN vs. SR

20

Transport Layer Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§  segment structure
§  reliable data transfer
§  flow control
§  connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer (contd.)

Practical Reliability Questions

v  How do the sender and receiver keep track of
outstanding pipelined segments?

v  How many segments should be pipelined?
v  How do we choose sequence numbers?
v  What does connection establishment and teardown

look like?
v  How should we choose timeout values?

21 Transport Layer (contd.)

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

v  full duplex data:
§  bi-directional data flow

in same connection
§ MSS: maximum segment

size
v  connection-oriented:

§  handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

v  flow controlled:
§  sender will not

overwhelm receiver

v  point-to-point:
§ one sender, one receiver

v  reliable, in-order byte
steam:
§  no “message

boundaries”
v  pipelined:

§ TCP congestion and flow
control set window size

v  send and receive
buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

Transport Layer (contd.) 22

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

receive window

Urg data pointer checksum
F S R P A U head

len
not

used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer (contd.) 23

TCP segment structure

Transport Layer (contd.) 24

TCP Segments

source port # dest port #

32 bits

application
data
(variable length)

Urg data pointer

F S R P A U head
len

not
used

checksum

receive window

sequence number

acknowledgement number

options (variable length)

20 Bytes

(UDP was 8)

Transport Layer Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§  segment structure
§  reliable data transfer
§  flow control
§  connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer (contd.) 25

Recall: Components of a solution for
reliable transport
v  Checksums (for error detection)
v  Timers (for loss detection)
v  Acknowledgments

§ cumulative
§ selective

v  Sequence numbers (duplicates, windows)
v  Sliding Windows (for efficiency)

§ Go-Back-N (GBN)
§ Selective Replay (SR)

Transport Layer (contd.) 26

What does TCP do?

Many of our previous ideas, but some key
differences
v  Checksum

Transport Layer (contd.) 27

28

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

Computed
over header
and data

Transport Layer (contd.)

What does TCP do?

Many of our previous ideas, but some key
differences
v  Checksum
v  Sequence numbers are byte offsets

Transport Layer (contd.) 29

TCP “Stream of Bytes” Service ..

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Application @ Host A

Application @ Host B

B
yte 80

B
yte 80

Transport Layer (contd.) 30

.. Provided Using TCP “Segments”

Byte 0
Byte 1
Byte 2
Byte 3

Byte 0
Byte 1
Byte 2
Byte 3

Host A

Host B

Byte 80

TCP Data

TCP Data

Byte 80

Segment sent when:
1.  Segment full (Max Segment Size),
2.  Not full, but times out

Transport Layer (contd.) 31

TCP Segment

v  IP packet
§ No bigger than Maximum Transmission Unit (MTU)
§  E.g., up to 1500 bytes with Ethernet

v  TCP packet
§  IP packet with a TCP header and data inside
§ TCP header ≥ 20 bytes long

v  TCP segment
§ No more than Maximum Segment Size (MSS) bytes
§  E.g., up to 1460 consecutive bytes from the stream
§ MSS = MTU – (IP header) – (TCP header)

IP Hdr

IP Data

TCP Hdr TCP Data (segment)

Transport Layer (contd.) 32

Sequence Numbers

Host A

ISN (initial sequence number)

Sequence number
= 1st byte in segment =

ISN + k

k bytes

Transport Layer (contd.) 33

Sequence Numbers

Host B

TCP Data

TCP Data

TCP
HDR

TCP
HDR

ACK sequence number
= next expected byte
= seqno + length(data)

Host A

ISN (initial sequence number)

Sequence number
= 1st byte in segment =

ISN + k

k

Transport Layer (contd.) 34

What does TCP do?

Most of our previous tricks, but a few differences
v  Checksum
v  Sequence numbers are byte offsets
v  Receiver sends cumulative acknowledgements (like GBN)

Transport Layer (contd.) 35

ACKing and Sequence Numbers
v  Sender sends packet

§  Data starts with sequence number X
§  Packet contains B bytes [X, X+1, X+2, ….X+B-1]

v  Upon receipt of packet, receiver sends an ACK
§  If all data prior to X already received:

•  ACK acknowledges X+B (because that is next expected byte)
§  If highest in-order byte received is Y s.t. (Y+1) < X

•  ACK acknowledges Y+1
•  Even if this has been ACKed before

Transport Layer (contd.) 36

Normal Pattern

v  Sender: seqno=X, length=B
v  Receiver: ACK=X+B
v  Sender: seqno=X+B, length=B
v  Receiver: ACK=X+2B
v  Sender: seqno=X+2B, length=B

v  Seqno of next packet is same as last ACK field

Transport Layer (contd.) 37

Packet Loss

v  Sender: seqno=X, length=B
v  Receiver: ACK=X+B
v  Sender: seqno=X+B, length=B

v  Sender: seqno=X+2B, length=B
v  Receiver: ACK = X+B

LOST

Transport Layer (contd.) 38

39

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

Acknowledgment
gives seqno just
beyond highest
seqno received in
order
(“What Byte
 is Next”)

Transport Layer (contd.)

TCP seq. numbers, ACKs
sequence numbers:
§ byte stream “number” of
first byte in segment’s
data

acknowledgements:
§ seq # of next byte
expected from other side

§ cumulative ACK

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
 N

sender sequence number space

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

outgoing segment from sender

Transport Layer (contd.) 40

Piggybacking

v  So far, we’ve assumed
distinct “sender” and
“receiver” roles

v  In reality, usually both
sides of a connection
send some data

41 Transport Layer (contd.)

Piggybacking

• So far, we’ve assumed
distinct “sender” and
“receiver” roles

• In reality, usually both
sides of a connection
send some data
– request/response is a

common pattern

Client Server

Without
Piggybacking

…

Client Server

With
Piggybacking

…

Quiz

Seq = ?, 2 KBytes of data
ACK = ?

ACK = ?

Seq = 1024, 1 KByte of data

Seq = 101, 2 KBytes of data

ACK = 101 + 2048 = 2149

ACK = 1024 + 1024 = 2048

Seq = 2149

Transport Layer (contd.) 42

What does TCP do?

Most of our previous tricks, but a few differences
v  Checksum
v  Sequence numbers are byte offsets
v  Receiver sends cumulative acknowledgements (like GBN)
v  Receivers can buffer out-of-sequence packets (like SR)

Transport Layer (contd.) 43

Loss with cumulative ACKs

v  Sender sends packets with 100B and seqnos.:
§ 100, 200, 300, 400, 500, 600, 700, 800, 900, …

v  Assume the fifth packet (seqno 500) is lost,
but no others

v  Stream of ACKs will be:
§ 200, 300, 400, 500, 500, 500, 500,…

Transport Layer (contd.) 44

What does TCP do?

Most of our previous tricks, but a few differences
v  Checksum
v  Sequence numbers are byte offsets
v  Receiver sends cumulative acknowledgements (like GBN)
v  Receivers do not drop out-of-sequence packets (like SR)
v  Sender maintains a single retransmission timer (like GBN) and

retransmits on timeout

Transport Layer (contd.) 45

TCP round trip time, timeout
Q: how to set TCP

timeout value?
v  longer than RTT

§  but RTT varies
v  too short: premature

timeout, unnecessary
retransmissions

v  too long: slow reaction
to segment loss and
connection has lower
throughput

Q: how to estimate RTT?
v  SampleRTT: measured

time from segment
transmission until ACK
receipt
§  ignore retransmissions

v  SampleRTT will vary, want
estimated RTT “smoother”
§  average several recent

measurements, not just
current SampleRTT

Transport Layer (contd.) 46

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
illi

se
co

nd
s)

SampleRTT Estimated RTT

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

v  exponential weighted moving average
v  influence of past sample decreases exponentially fast
v  typical value: α = 0.125

TCP round trip time, timeout

RT
T

(m
ill

is
ec

on
ds

)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time (seconds) Transport Layer (contd.) 47

v  timeout interval: EstimatedRTT plus “safety margin”
§  large variation in EstimatedRTT -> larger safety margin

v  estimate SampleRTT deviation from EstimatedRTT:
DevRTT = (1-β)*DevRTT +
 β*|SampleRTT-EstimatedRTT|

TCP round trip time, timeout

(typically, β = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Transport Layer (contd.) 48

Practice Problem:
http://wps.pearsoned.com/ecs_kurose_compnetw_6/216/55463/14198700.cw/index.html

Why exclude retransmissions in RTT
computation?

v  How do we differentiate between the real ACK, and ACK of
the retransmitted packet?

ACK

Retransmission

Original Transmission

Sa
m

pl
eR

T
T

Sender Receiver

ACK
Retransmission

Original Transmission

SampleRTT

Sender Receiver

Transport Layer (contd.) 49

TCP sender events:
data rcvd from app:
v  create segment with

seq #
v  seq # is byte-stream

number of first data
byte in segment

v  start timer if not
already running
§  think of timer as for

oldest unacked
segment

§  expiration interval:
TimeOutInterval

timeout:
v  retransmit segment

that caused timeout
v  restart timer
 ack rcvd:
v  if ack acknowledges

previously unacked
segments
§  update what is known

to be ACKed
§  start timer if there are

still unacked segments

Transport Layer (contd.) 50

PUTTING IT
 TOGETHER

TCP sender (simplified)

wait
for

event

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

Λ

create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data)
if (timer currently not running)
 start timer

data received from application above

retransmit not-yet-acked segment
 with smallest seq. #

start timer

timeout

if (y > SendBase) {
 SendBase = y
 /* SendBase–1: last cumulatively ACKed byte */
 if (there are currently not-yet-acked segments)
 start timer
 else stop timer
 }

ACK received, with ACK field value y

Transport Layer (contd.) 51

PUTTING IT
 TOGETHER

TCP: retransmission scenarios

lost ACK scenario

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

X tim
eo

ut

ACK=100

premature timeout

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

Transport Layer (contd.) 52

TCP: retransmission scenarios

X

cumulative ACK

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

Transport Layer (contd.) 53

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer (contd.) 54

What does TCP do?

Most of our previous tricks, but a few differences
v  Checksum
v  Sequence numbers are byte offsets
v  Receiver sends cumulative acknowledgements (like GBN)
v  Receivers may not drop out-of-sequence packets (like SR)
v  Sender maintains a single retransmission timer (like GBN) and

retransmits on timeout
v  Introduces fast retransmit: optimisation that uses duplicate

ACKs to trigger early retransmission

55

TCP fast retransmit
v  time-out period often

relatively long:
§  long delay before

resending lost packet
v  “Duplicate ACKs” are a

sign of an isolated loss
§ The lack of ACK

progress means that
packet hasn’t been
delivered

§  Stream of ACKs means
some packets are being
delivered

§ Could trigger resend on
receiving “k” duplicate
ACKs (TCP uses k = 3)

if sender receives 3
duplicate ACKs for
same data
(“triple duplicate ACKs”),
resend unacked
segment with smallest
seq #
§  likely that unacked

segment is lost, so
don’t wait for timeout

TCP fast retransmit

Transport Layer (contd.) 56

X

fast retransmit after sender
receipt of triple duplicate ACK

Host B Host A

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut

ACK=100

ACK=100

ACK=100

TCP fast retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

Transport Layer (contd.) 57

What does TCP do?

Most of our previous ideas, but some key
differences
v  Checksum
v  Sequence numbers are byte offsets
v  Receiver sends cumulative acknowledgements (like GBN)
v  Receivers do not drop out-of-sequence packets (like SR)
v  Sender maintains a single retransmission timer (like GBN) and

retransmits on timeout
v  Introduces fast retransmit: optimization that uses duplicate

ACKs to trigger early retransmission

Transport Layer (contd.) 58

Transport Layer Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§  segment structure
§  reliable data transfer
§  flow control
§  connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer (contd.) 59

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so
sender won’t overflow
receiver’s buffer by transmitting
too much, too fast

flow control

Transport Layer (contd.) 60

TCP flow control

buffered data

free buffer space rwnd

RcvBuffer

TCP segment payloads

to application process
v  receiver “advertises” free

buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments
§  RcvBuffer size set via

socket options (typical default
is 4096 bytes)

§  many operating systems
autoadjust RcvBuffer

v  sender limits amount of
unacked (“in-flight”) data to
receiver’s rwnd value

v  guarantees receive buffer
will not overflow

receiver-side buffering

Transport Layer (contd.)
61

http://media.pearsoncmg.com/aw/aw_kurose_network_4/applets/flow/FlowControl.htm

Transport Layer Outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§  segment structure
§  reliable data transfer
§  flow control
§  connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer (contd.) 62

Connection Management
before exchanging data, sender/receiver “handshake”:
v  agree to establish connection (each knowing the other willing

to establish connection)
v  agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
 server-to-client
rcvBuffer size
 at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
 server-to-client
rcvBuffer size
 at server,client

application

network

Socket clientSocket =
 newSocket("hostname","port

number");

Socket connectionSocket =
welcomeSocket.accept();

Transport Layer (contd.) 63

Initial Sequence Number (ISN)
v  Sequence number for the very first byte

v  Why not just use ISN = 0?

v  Practical issue
§  IP addresses and port #s uniquely identify a connection
§  Eventually, though, these port #s do get used again
§  … small chance an old packet is still in flight
§  Easy to hijack a TCP connection (security threat)

v  TCP therefore requires changing ISN

v  Hosts exchange ISNs when they establish a
connection

Transport Layer (contd.) 64

Q: will 2-way handshake
always work in
network?

v  variable delays
v  retransmitted messages

(e.g. req_conn(x)) due to
message loss

v  message reordering
v  can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
 req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Agreeing to establish a connection

Transport Layer (contd.) 65

Agreeing to establish a connection
2-way handshake failure scenarios:

retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client
terminates

server
forgets x

connection
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

choose x
 req_conn(x)

ESTAB

ESTAB

acc_conn(x)

client
terminates

ESTAB

choose x
 req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

Transport Layer (contd.) 66

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

CLOSED

server state

LISTEN

Transport Layer (contd.) 67

A B

TCP 3-way handshake: FSM

closed

Λ

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =
 newSocket("hostname","port

number");

SYN(seq=x)

Socket connectionSocket =
welcomeSocket.accept();

SYN(x)
SYNACK(seq=y,ACKnum=x+1)

create new socket for
communication back to client

SYNACK(seq=y,ACKnum=x+1)

 ACK(ACKnum=y+1)

ACK(ACKnum=y+1)

Λ

Transport Layer (contd.) 68

Step 1: A’s Initial SYN Packet

A’s port B’s port

A’s Initial Sequence Number

(Irrelevant since ACK not set)

Advertised window 5 Flags 0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

A tells B it wants to open a connection…

Transport Layer (contd.)

Step 2: B’s SYN-ACK Packet

B’s port A’s port

B’s Initial Sequence Number

ACK = A’s ISN plus 1

Advertised window 5 0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

B tells A it accepts, and is ready to hear the next byte…

… upon receiving this packet, A can start sending data

Flags

Transport Layer (contd.) 70

Step 3: A’s ACK of the SYN-ACK

A’s port B’s port

B’s ISN plus 1

Advertised window 5 Flags 0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

A tells B it’s likewise okay to start sending

A’s Initial Sequence Number

… upon receiving this packet, B can start sending data
Transport Layer (contd.) 71

What if the SYN Packet Gets Lost?

v  Suppose the SYN packet gets lost
§  Packet is lost inside the network, or:
§  Server discards the packet (e.g., it’s too busy)

v  Eventually, no SYN-ACK arrives

§  Sender sets a timer and waits for the SYN-ACK
§  … and retransmits the SYN if needed

v  How should the TCP sender set the timer?

§  Sender has no idea how far away the receiver is
§  Hard to guess a reasonable length of time to wait
§  SHOULD (RFCs 1122 & 2988) use default of 3 seconds

•  Some implementations instead use 6 seconds

Transport Layer (contd.) 72

SYN Loss and Web Downloads
v  User clicks on a hypertext link

§  Browser creates a socket and does a “connect”
§  The “connect” triggers the OS to transmit a SYN

v  If the SYN is lost…
§  3-6 seconds of delay: can be very long
§  User may become impatient
§  … and click the hyperlink again, or click “reload”

v  User triggers an “abort” of the “connect”
§  Browser creates a new socket and another “connect”
§  Essentially, forces a faster send of a new SYN packet!
§  Sometimes very effective, and the page comes quickly

Transport Layer (contd.) 73

TCP: closing a connection

v  client, server each close their side of connection
§  send TCP segment with FIN bit = 1

v  respond to received FIN with ACK
§ on receiving FIN, ACK can be combined with own FIN

v  simultaneous FIN exchanges can be handled

Transport Layer (contd.) 74

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
 wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

 timed wait
for 2*max

segment lifetime

CLOSED

Normal Termination, One at a Time

FIN_WAIT_1 FINbit=1, seq=x can no longer
send but can
 receive data

clientSocket.close()

client state

server state

ESTAB ESTAB

Transport Layer (contd.) 75
TIMED_WAIT: Can retransmit ACK if ACK is lost

CLOSE_WAIT

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
 wait for server

close

FIN + ACK
together

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

 timed wait
for 2*max

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=x can no longer
send but can
 receive data

clientSocket.close()

client state

server state

ESTAB ESTAB

Transport Layer (contd.) 76

FINbit=1, seq=y

Normal Termination, Both Together

Abrupt Termination

v  A sends a RESET (RST) to B
§  E.g., because application process on A crashed

v  That’s it
§  B does not ack the RST
§  Thus, RST is not delivered reliably
§  And: any data in flight is lost
§  But: if B sends anything more, will elicit another RST

SY
N

SY
N

 A
CK

A
CK

D

at
a

RS
T A

CK

time
A

B

D
ata RS

T

Transport Layer (contd.) 77

78

TCP Finite State Machine

Transport Layer (contd.)

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK
Timeout after two
segment lifetimesFIN/ACK

ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open /SYN

Data, ACK
exchanges
are in here

79

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

Transport Layer (contd.)

80

TCP SYN Attack (SYN flooding)
v  Miscreant creates a fake SYN packet

§  Destination is IP address of victim host (usually some server)
§  Source is some spoofed IP address

v  Victim host on receiving creates a TCP connection state i.e allocates buffers,
creates variables, etc and sends SYN ACK to the spoofed address (half-open
connection)

v  ACK never comes back
v  After a timeout connection state is freed
v  However for this duration the connection state is unnecessarily created
v  Further miscreant sends large number of fake SYNs

§  Can easily overwhelm the victim
v  Solutions:

§  Increase size of connection queue
§  Decrease timeout wait for the 3-way handshake
§  Firewalls: list of known bad source IP addresses
§  TCP SYN Cookies (explained on next slide)

Transport Layer (contd.)

81

TCP SYN Cookie
v  On receipt of SYN, server does not create connection

state
v  It creates an initial sequence number (init_seq) that is a

hash of source & dest IP address and port number of SYN
packet (secret key used for hash)
§  Replies back with SYN ACK containing init_seq
§  Server does not need to store this sequence number

v  If original SYN is genuine, an ACK will come back
§  Same hash function run on the same header fields to get the initial

sequence number (init_seq)
§  Checks if the ACK is equal to (init_seq+1)
§  Only create connection state if above is true

v  If fake SYN, no harm done since no state was created
http://etherealmind.com/tcp-syn-cookies-ddos-defence/

Transport Layer (contd.)

Taking Stock (1)

v  The concepts underlying TCP are simple
§ acknowledgments (feedback)
§ timers
§ sliding windows
§ buffer management
§ sequence numbers

Transport Layer (contd.) 82

Taking Stock (2)

v  The concepts underlying TCP are simple
v  But tricky in the details

§ How do we set timers?
§ What is the seqno for an ACK-only packet?
§ What happens if advertised window = 0?
§ What if the advertised window is ½ an MSS?
§ Should receiver acknowledge packets right away?
§ What if the application generates data in units of 0.1

MSS?
§ What happens if I get a duplicate SYN? Or a RST while

I’m in FIN_WAIT, etc., etc., etc.
Transport Layer (contd.) 83

Transport: summary (so far)
v  principles behind

transport layer services:
§ multiplexing,

demultiplexing
§ reliable data transfer
§ flow control
§ congestion control

(next week)
v  instantiation,

implementation in the
Internet
§ UDP
§ TCP

next:
v  leaving the

network
“edge” (application
, transport layers)

v  into the network
“core”

Transport Layer (contd.) 84

85

Mid-semester Exam
v  29th Aug (Mon, Week 6), regular lecture hours (4-6pm)
v  Various rooms – check webpage for your room
v  Exam will run for 90 minutes

v  Check dedicated page on the course website
v  Sample exam provided
v  Content

§  Topics covered in Week 1 -5 Lectures
§  Chapter 1, 2 and 3 (3.1-3.5) from textbook
§  All self-study sections are included
§  The external references (papers, links, etc.) are NOT included

v  Closed book
v  No laptops, tablets, phone, electronic devices, …
v  BYO Calculator
v  Discussions on forum encouraged
v  Good luck Transport Layer

