
COMP1511 - Programming
Fundamentals

Week 5 - Lecture 10

What did we cover last lecture?
Debugging

● How to think about different bugs (code errors)
● Some tricks and techniques to remove bugs from our code

Characters

● A new variable type!
● Letters and other symbols

What are we covering today?
Characters

● Continuing characters

Strings

● Words that contain multiple characters

Structs

● Containers that can hold different variable types

Characters in code
#include <stdio.h>

int main (void) {
 // we're using an int to represent a single character
 int character;
 // we can assign a character value using single quotes
 character = 'a';
 // This int representing a character can be used as either
 // a character or a number
 printf("The letter %c has the ASCII value %d.\n", character,
character);
 return 0;
}

Note the use of %c in the printf will format the variable as a character

Helpful Functions
getchar() is a function that will read a character from input

● Reads a byte from standard input
● Usually returns an int between 0 and 255 (ASCII code of the byte it read)
● Can return a -1 to signify end of input, EOF (which is why we use an int,

not a char)
● Sometimes getchar won’t get its input until enter is pressed at the end of

a line

putchar() is a function that will write a character to output

● Will act very similarly to printf("%c", character);

Use of getchar() and putchar()

// using getchar() to read a single character from input
int inputChar;
printf("Please enter a character: ");
inputChar = getchar();
printf("The input %c has the ASCII value %d.\n", inputChar, inputChar);

// using putchar() to write a single character to output
putchar(inputChar);

Invisible Characters
There are other ASCII codes for “characters” that can’t be seen

● Newline(\n) is a character
● Space is a character
● There’s also a special character, EOF (End of File) that signifies that there’s

no more input
● EOF has been #defined in stdio.h, so we use it like a constant
● We can signal the end of input in a Linux terminal by using Ctrl-D

Working with multiple characters
We can read in multiple characters (including space and newline)

This code is worth trying out . . . you get to see that space and newline have
ASCII codes!

 // reading multiple characters in a loop
 int readChar;
 readChar = getchar();
 while (readChar != EOF) {
 printf(
 "I read character: %c, with ASCII code: %d.\n",
 readChar, readChar
);
 readChar = getchar();
 }

More Character Functions
<ctype.h> is a useful library that works with characters

● int isalpha(int c) will say if the character is a letter
● int isdigit(int c) will say if it is a numeral
● int islower(int c) will say if a character is a lower case letter
● int toUpper(int c) will convert a character to upper case

● There are more! Look up ctype.h references or man pages for more
information

Strings
When we have multiple characters together, we call it a string

● Strings in C are arrays of char variables containing ASCII code
● Strings are like words (or sentences), while chars are single letters

● Strings have a helping element at the end, a character: '\0'
● It’s often called the 'null terminator' and it is an invisible character
● This helps us know if we’re at the end of the string

Strings in Code
Strings are arrays of type char, but they have a convenient shorthand

Both of these strings will be created with 6 elements. The letters h,e,l,l,o
and the null terminator \0

 // a string is an array of characters
 char word1[] = {'h','e','l','l','o','\0'};
 // but we also have a convenient shorthand
 // that feels more like words
 char word2[] = "hello";

h e l l o \0

Reading and writing strings
fgets(array[], length, stream) is a useful function for reading strings

● It will take up to length number of characters
● They will be written into the array
● The characters will be taken from a stream
● Our most commonly used stream is called stdin, “standard input”

● stdin is our user typing input into the terminal

Reading and writing strings in code

● fputs(array, stream) works very similarly to printf
● It will output the string stored in the array to a stream
● We can use stdout which is our stream to write to the terminal

 // reading and writing lines of text
 char line[MAX_LINE_LENGTH];
 while (fgets(line, MAX_LINE_LENGTH, stdin) != NULL) {
 fputs(line, stdout);
 }

Helpful Functions in the String Library
<string.h> has access to some very useful functions

Note that char *s is equivalent to char s[] as a function input

● int strlen(char *s) - return the length of the string (not including \0)
● strcpy and strncpy - copy the contents of one string into another
● strcat and strncat - attach one string to the end of another
● strcmp and variations - compare two strings
● strchr and strrchr - find the first or last occurrence of a character
● And more . . .

Whooaaah We're Halfway There . . .
We're going to use a bit of everything we've seen so far in COMP1511

This program is a word game

● It will read in a string from the user
● It will then read in another string from the user and tell us how many of

the letters from the second appear in the first
● This will use if, while, arrays (of characters), functions and pointers

Where will we start?
A simple version to begin with

● Let's read in a line of characters
● Then read in a single character and see whether it's in the line or not

Read in a line of characters (a string)

#define MAX_LINE_LENGTH 100

int main(void) {
 char line[MAX_LINE_LENGTH];
 fgets(line, MAX_LINE_LENGTH, stdin);

We can use a nice library function here

● fgets() will grab an entire line from standard input
● We can set up a maximum line size as well

Read in a single character
Starting simple, we can take a character as input

● getchar() will read a single character from standard input
● Remember that we'll be using int as our type for individual characters
● Here we can loop and continually get characters until input ends

 int inputChar;
 inputChar = getchar();
 while (inputChar != EOF) {
 inputChar = getchar();
 }

Break Time
We're roughly halfway through COMP1511

● This time can sometimes be rough
● It's probably the most tired time of the year for a lot of people

● Remember that you only have to take one step at a time
● Your goals might be so far away that you can't think of how to reach them
● But you only have to move a little bit towards them at a time
● And you'll get there eventually!

A Function to find a character in a string
Loop through the string, testing for a character

● We've done this kind of loop before with other types!

int testChar(char c, char *line) {
 int charCount = 0;
 int i = 0;
 while (i < MAX_LINE_LENGTH && line[i] != '\0') {
 if (line[i] == c) {
 charCount++;
 }
 i++;
 }
 return charCount;
}

Simple functionality . . . how well is it working?
What tests should we run at this point?

● Look for syntax errors using our compiler (dcc)
● Look for logical errors by testing with different inputs

We might need to add in some extra outputs

● If we're getting strange behaviour, we can confirm our guesses
● We might learn more about what's going on in our program

What are these extra characters?
Maybe we need to check what those characters are

● Some print statements can help here

 int inputChar;
 inputChar = getchar();
 while (inputChar != EOF) {
 printf("Main loop running, readChar is %c.\n", inputChar);
 printf("%d\n", testChar(inputChar, line));
 inputChar = getchar();
 }

Dealing with little issues
We're reading newlines (\n) as characters!

● Let's remove the newlines from both our line and our inputs
● We'll use a library function, strlen() to find the end of a string
● To use strlen(), we will need the string.h library, which we will include
● We'll then replace the \n with \0 which will end the string early

Removing newlines

int main(void) {
 char line[MAX_LINE_LENGTH];
 fgets(line, MAX_LINE_LENGTH, stdin);
 int length = strlen(input);
 input[length - 1] = '\0';

 inputChar = getchar();
 if (inputChar == '\n') {
 inputChar = getchar();
 }

Removing a \n at the end of a string:

Ignoring the \n while reading input:

Expanding on the functionality
Our first attempt just checked for single letters

● Now we expand to words!
● Read in another word
● Check every letter in the word for whether it appears in the phrase
● Then report back how many letters matched

Some good reasons to use functions!

● Reading in words is now duplicated
● We can reuse our testChar() function to see if letters match

A function to read a line
This function also removes the \n that fgets will give us

void readString(char *input) {
 fgets(input, MAX_LINE_LENGTH, stdin);
 int length = strlen(input);
 input[length - 1] = '\0';
}

A function to count letters
Counts how many letters from one string appear in the other

This function also uses another function!

int numLetterMatches(char *word, char *line) {
 int i = 0;
 int matchCount = 0;
 while (i < MAX_LINE_LENGTH && word[i] != '\0') {
 if (testChar(word[i], line)) {
 matchCount++;
 }
 i++;
 }
 return matchCount;
}

A simple word game
What coding concepts have we used there that might come in handy?

● Characters and Strings (note that we'll never need to memorise the ASCII
table to work with characters)

● Using libraries and provided functions
● Loops on strings (using the Null Terminator \0)
● Writing multiple functions and using functions within functions
● A lot of our basic C concepts like if, while and array indexing

Structs
A new way of collecting variables together

● Structs (short for structures) are a way to create custom variables
● Structs are variables that are made up of other variables
● They are not limited to a single type like arrays
● They are also able to name their variables
● Structs are like the bento box of variable collections

Before we can use a struct . . .
Structs are like creating our own variable type

● We need to declare this type before any of the functions that use it
● We declare what a struct is called and what the fields (variables) are

struct performer {
 char name[MAX_LENGTH];
 char description[MAX_LENGTH];
 int rank;
};

Creating a struct variable and accessing its fields
Declaring and populating a struct variable

● Declaring a struct: "struct structname variablename;"
● Use the . to access any of the fields inside the struct by name

int main(void) {
 struct performer rm;
 strcpy(rm.name, "Rap Monster");
 strcpy(rm.description, "Leader");
 rm.rank = 1;

 printf("%s's description is: %s.\n", rm.name, rm.description);
}

Accessing Structs through pointers
Pointers and structs go together so often that they have a shorthand!

 struct performer *rapper = &rm;

 // knowledge of pointers suggests using this
 *rapper.rank = 100;

 // but there's another symbol that automatically
 // dereferences the pointer and accesses a field
 // inside the struct
 rapper->rank = 100;

Structs as Variables
Structs can be treated as variables

● Yes, this means arrays of structs are possible
● It also means structs can be some of the variables inside other structs
● In general, it means that once you've defined what a struct is, you use it

like any other variable

What did we learn today?
Characters and Strings

● Expanding our variables to letters and words
● A code example to show some of the use of strings
● Using libraries to make strings easier

Structs

● Collections of variables of different types

