COMP2121: Microprocessors and
Interfacing

AVR Assembly Programming (I1I)
Functions, Macros, and Assembly
Process

http://www.cse.unsw.edu.au/~cs2121
Lecturer: Hui Wu
Term 2, 2019

Overview
* Stack
* Variable types
* Memory sections in C
 Parameter passing
« Stack frames
* Implementation of functions
» Recursive functions
» Computing the stack size for function calls
* Macros

» Assembly process

Stacks

A stack is a contiguous area of memory that supports two
operations:

O push: push a data item on the top of the stack

O pop: pop the data item on top of the stack to a register
LIFO-First In, Last Out

Every processor has a stack of some kind
O Used for function (subroutine) calls and interrupts
O Used to store local variables in C

A special register named Stack Pointer (SP) stores the
address of the stack top

Push Register on Stack

Syntax: push Rr
Operands: Rre{r0,rl, ..., r31}
Operation: (SP) < Rr
SP < SP -1
Flag affected: None
Encoding: 1001 001d dddd 1111

Words: 1

Cycles: 2

Example
call routine ; Call subroutine

routine: pushrl4 ; Save r14 on the stack

pushrl3 ; Save r13 on the stack
poprl3 ; Restore r13
pop r14 ; Restore r14

ret ; Return from subroutine

Pop Register from Stack

Syntax: pop Rd
Operands: Rde{r0,rl, ..., 31}
Operation: ~ SP «— SP +1
Rd « (SP)
Flag affected: None
Encoding: 1000 000d dddd 1111

Words: 1

Cycles: 2

Example
call routine ; Call subroutine

routine: push r14 ; Save r14 on the stack

pushrl3 ; Save r13 on the stack
poprl3 ; Restore r13
pop rl4 ; Restore r14
ret ; Return from subroutine

Stacks (Cont.)

* A stack will grow after push is executed.
* A stack will shrink after pop is executed.

* A stack may grow upwards (from a lower address to a
higher address) or downwards (from a higher address to a
lower address).

* The direction in which a stack grows is determined by the
hardware.

AVR and Stacks

» Stacks are part of SRAM space.

* Stacks grow downwards (from a higher address to a lower
address).

* SP needs to hold addresses (therefore 16 bits wide).

U Made up of two 8 bit registers

0 SPH (high byte) (IO register $3E)
o SPL (low byte) (IO register $3D)

* First thing to do in any program is to initialize the stack pointer.

a Typically stacks use the top of SRAM space.

AVR Stack Initialization

.nclude “m2560def.inc”

.def temp=r20

.cseg

1di temp, low(RAMEND)
out spl, temp

1di temp, high(RAMEND)

RAMEND-1 out sph, temp

RAMFENY'
S

Oxff

RAMEND-1
RAMEN/Q/

AVR Stack Operations

.include “m2560def.inc”
.def temp=r20

.cseg

Idi temp, low(RAMEND)
out spl, temp

1di temp, high(RAMEND)
out sph, temp

Idi r1, Oxft

push rl

AVR Stack Operations (Cont.)

RAMEND-I

Oxff

RAMEND
sv/

.Anclude “m2560def.inc”
.def temp=r20

.cseg

1di temp, low(RAMEND)
out spl, temp

1di temp, high(RAMEND)
out sph, temp

Idi r1, Oxff

pushrl

pop r2 ; 12=0xff

10

Relative Call to Subroutine

Syntax: rcall k
Operands: -2K<k<2K
Operation: (i) STACK « PC + 1 (Store return address)
(ii) SP« SP— 2 (2 bytes, 16 bits) for devices with 16 bits PC
SP « SP — 3 (3 bytes, 22 bits) for devices with 22 bits PC
(iii) PC+—PC+k+1
Flag affected: None.
Encoding: 1101 kkkk kkkk kkkk
Words: 1
Cycles: 3 (Devices with 16-bit PC)
4 (Devices with 22-bit PC)

11

Relative Call to Subroutine (Cont.)

Example:

rcall routine ; Call subroutine

routine: pushrl4 ; Save r14 on the stack
pushrl5 ; Save r15 on the stack
; Put the code for the subroutine here.
pop rl5 ; Restore r15
pop rl4 ; Restore r14
ret ; Return from subroutine

12

12

Indirect Call to Subroutine

« Syntax: icall
* Operation: (i) STACK « PC + 1 (Store return address)

(ii) SP «— SP — 2 (2 bytes, 16 bits) for devices with 16 bits PC
SP « SP — 3 (3 bytes, 22 bits) for devices with 22 bits PC
(iii) PC(15:0) «— Z(15:0) for devices with 16 bits PC
PC(15:0) < Z(15:0) and PC(21:16) «<— 0 for devices with
22 bits PC
* Flag affected: None.
+ Encoding: 1001 0101 0000 1001

« Words: 1
+ Cycles: 3 (Devices with 16-bit PC)
4 (Devices with 22-bit PC)
13
13
Indirect Call to Subroutine (Cont.)
* Example:
clr r10 ; Clearrl0
Idi 120, 2 ; Load call table offset
Idi r30, low(Lab<<1) ; High byte of the starting address (base) of call table
[dir31, high(Lab=<1) ; Low byte of the starting address (base) of call table
add r30, r20
adcr31,rl0 ; Base + offset is the address of the call table entry
Ipm r0, Z+ ; Load low byte of the the call table entry
Ipmrl, Z ; Load high byte of the call table entry
movw r31:r30, r1:r0 ; Set the pointer register Z to point the target function
icall ; Call the target function
Lab: .dwect 10 ; The first entry of the call table
dwct 11 ; The second entry of the call table
ct _10: nop
ct_11: nop
14

14

Long Call to Subroutine

Syntax: call k

Operands: 0<k < 64K

Operation: (i) STACK « PC + 1 (Store return address)
(i) SP « SP —2 (2 bytes, 16 bits) for devices with 16 bits PC

SP «— SP - 3 (3 bytes, 22 bits) for devices with 22 bits PC

(ili) PC <k

Flag affected: None.

Encoding: 1001 010k kkkk 111k

kkkk kkkk kkkk kkkk
Words: 2
Cycles: 4 (Devices with 16-bit PC)

5 (Devices with 22-bit PC)

15

15

Long Call to Subroutine (Cont.)

» Example:
mov rl6, r0 ; Copy r0torl6
call check ; Call subroutine
nop ; Continue (do nothing)
check: cpi r16, $42 ; Check if r16 has a special value
breq error ; Branch if equal

error: Idirl, 1
; put the code for handling the error here

ret ; Return from subroutine

16

16

Return from Subroutine

Syntax: ret

Operation: (i) SP « SP + 2 (2 bytes, 16 bits) for devices with 16 bits PC
SP « SP + 3 (3 bytes, 22 bits) for devices with 22 bits PC

(i1) PC(15:0) «— STACK for devices with 16 bits PC
PC(21:0) « STACK Devices with 22 bits PC

Flag affected: None

Encoding: 1001 0101 0000 1000

Words: 1

Cycles: 4 (Devices with 16-bit PC)
5 (Devices with 22-bit PC)

Example: routine: pushrl4 ; Save r14 on the stack
; Put the code for the subroutine here.
poprl4 ; Restore r14
ret ; Return from subroutine

17

Types of Variables in C

Global variables: The variable that are declared outside a
function

O Exist during the execution of the program

Local variables: The variables that are declared in a
function.

O Exist during the execution of the function only

Static variables.
O Can be either global or local.

O A global static variable is valid only within the file where it is
declared

O A local static variable still exists after the function returns

18

Variable Types and Memory Sections

Global variables occupy their memory space during the
execution of the program

O Need the static memory which exists during the program’s lifetime

Static local variables still occupy their memory space after
the function returns.

U Also need the static memory which exists after the function returns.

Local variables occupy their memory space only during the
execution of the function.

U Need the dynamic memory which exists only during the execution of
the function

So the entire memory space need be partitioned into different
sections to be more efficiently utilized.

19
An Example (1/3)
#inlcude <stdio.h>
ntx,y; /* Global variables */
static int b[10]; /* Static global array */
void auto_static(void)
{
int autovar=1; /* Local variable */
static int staticvar=1; /* Static local variable */
printf(autovar = %i, staticvar = %i\n, autovar, staticvar);
++autovar;
++staticvar;
} 20
20

10

An Example (2/3)

int main(void)
{
int 1; /* Local variable */
for (i=0; 1<5; i++)
auto_static();

return 0;

21

21

An Example (3/3)

Program output:

Autovar = 1, staticvar = 1
Autovar = 1, staticvar = 2
Autovar = 1, staticvar =3
Autovar = 1, staticvar = 4

Autovar = 1, staticvar =5

22

22

11

Memory Sections in C for General
Microprocessors

Heap: Used for dynamic memory applications such as
malloc() and calloc()

Stack: Used to store return address, actual parameters,
conflict registers and local variables and other information.

Uninitialized data section .bss,
U contains all uninitialized global or static local variables.

Data section .data.

O Contains all initialized global or static local variables

Text section .text

Q Contains code

23

23

Memory Sections in WINAVR (C
for AVR)

Additional EEPROM section .ceprom

U Contains constants in eeprom

The text section .text in WINAVR includes two subsections
AnitN and .finiN

QO .initN contains the startup code which initializes the stack

and copies the initialized data section .data from flash to
SRAM.

O .finiN is used to define the exit code executed after
return from main() or a call to exit().

24

24

12

C Functions

void maip(void) {
int i) j) k7 m; Caller

1= mult(j,k);

m= mult(i,i);\
. —_ . Actual

ooy

}

int mult (int meand, int mlier)

Parameters

{ —
int product = 0; —Callee

while (mlier > 0) {
product = product + mcand;
mlier = mlier -1;

}

return product;

25

25

Two Parameter Passing Approaches

* Pass by value
U Pass the value of an actual parameter to the callee
U Not efficient for structures and array

% Need to pass the value of each element in the structure or
array

* Pass by reference
U Pass the address of the actual parameter to the callee

U Efficient for structures and array passing

26

26

13

Parameter Passing in C

* Pass by value for scalar variables such as char, int and float.

* Pass by reference for non-scalar variables i.e. array and
structures.

27

27

Implementation of C Functions

Issues:
- How to pass the actual parameters by value to a function?

* How to pass the actual parameters by reference to a
function?

* Where to get the return value?

* How to allocate stack memory to local variables?

* How to deallocate stack memory after a function returns?
* How to handle register conflicts?

Rules are needed between caller and callee.

28

28

14

Register Conflicts

« If a register is used in both caller and callee and the caller
needs its old value after the return from the callee, then a
register conflict occurs. The register is called a conflicting
register.

» Compilers or assembly programmers need to check for
register conflicts.

* Save conflicting registers on the stack.

» Caller or callee or both can save conflicting registers.

U In WINAVR, callee saves conflicting registers.

29

29

Parameter Passing and Return
Value

* May use general registers to store part of actual
parameters and push the rest of parameters on the stack.

U WINAVR uses general registers up to 24 to store actual
parameters

U Actual parameters are eventually passed to the formal parameters
stored on the stack.

* The return value need be stored in designated registers
U WINAVR uses r25:124 to store the return value.

30

30

15

Stack Structure

* A stack consists of stack frames.

* A stack frame is created whenever a function is
called.

* A stack frame is freed whenever the function
returns.

* What’s inside a stack frame?

31

31

Stack Frame

A typical stack frame consists of the following components:
* Return address
U Used when the function returns

* The values of conflicting registers when the
function is called

U Need to restore the old contents of these registers when
the function returns

O One conflicting register is the stack frame pointer
* Parameters (arguments)

* Local variables
32

32

16

Implementation Considerations

* Local variables and parameters need be stored
contiguously on the stack for easy accesses.

* In which order the local variables or parameters
stored on the stack? In the order that they appear in the
program from left to right? Or the reverse order?

O C compiler uses the reverse order.
* Need a stack frame register to point to either the base
(starting address) or the top of the stack frame

U Points to the top of the stack frame if the stack grows
downwards. Otherwise, points to the base of the stack frame
(Why?)

L WINAVR uses Y (r29: 128) as a stack frame register.

33

33
An Sample Stack Frame
Structure for AVR
int main(void) RAMEND Stack frame
{ for main()
N Return address
foo(argl, arg2, ..., argm); Conflicting registers
h Local variable n
void foo(argl, arg2, ..., argm)
{ int varl, var2, ..., varn; Stack Local variable 1
frame for P
. arameter m
foo()
' Parameter 1
N Empty 34
34

17

A Template for Caller

Caller:

1. Store a subset of actual parameters in designated
registers and the rest of actual parameters on the
stack.

2. Call the callee.

35

35
A Template for Callee (1/3)

Callee:

1. Prologue

2. Function body

3. Epilogue

36

36

18

A Template for Callee (2/3)

Prologue:

» Store conflicting registers, including the stack frame
register Y, on the stack by using push

* Pass the actual parameters to the formal parameters on the
stack

» Update the stack frame register Y to point to the top of its
stack frame

Function body:

Does the normal task of the function.
37

37

A Template for Callee (3/3)

Epilogue:
1. Store the return value in designated registers r25:1r24.

2. Deallocate local variables and parameters by updating the
stack pointer SP.

U SP=SP + the size of all parameters and local variables.

3. Restore conflicting registers from the stack by using pop

U The conflicting registers must be popped in the reverse order in
which they are pushed on the stack.

U The stack frame register of the caller is also restored.

O Step 2 and Step 3 together deallocate the stack frame.

4. Return to the caller by using ret.
38

38

19

An Example

int foo(char a, int b, int ¢);

int main()

{int1, j;
1=0;
j=300;
foo(1, 1, j);
return 0;

}

int foo(char a, int b, int c)
{intx,y, z;
x=a+tb;
y=c¢—a;
z=Xty;
return z;

}

39

39

RAMEND j
i
Return address
Conflicting register 128
Y (r29:128) ! r29
z
y
X
c
b
Stack frame a
pointer Y for Empty

foo()

Stack frames for main() and foo()

Stack frame
pointer Y for
main()

Local
variables

Parameters

40

40

An Example (1/3)

Anclude “m2560def.inc”

.cseg

; Include definition file for ATmega2560

main: 1di r28, low(RAMEND-4) ; 4 bytes to store local variables i and j
1di r29, high(RAMEND-4) ; The size of each integer is 2 bytes

out SPH, r29

out SPL, 28
clrr0

std Y+1, r0

std Y+2, r0

1di r24, low(300)
1di 125, high(300)

; Adjust stack pointer so that it points to

; the new stack top.

; The next three instructions implement i=0
; The address of 1 in the stack is Y+1

; The next four instructions implement j=300

std Y+3, r24
std Y+4, 125
1dd r20,Y+3 ; 121:120 keep the actual parameter j
ldd r21,Y+4
1dd r22,Y+1 ; 123:122 keep the actual parameter i
1dd r23,Y+2
Idi r24,low(1) ; 124 keeps the actual parameter 1
rcall foo ; Call foo 41
41
An Example (2/3)
foo: ; Prologue: frame size=11 (excluding the stack frame
; space for storing return address and registers)
push r28 ; Save 128 and r29 in the stack
push 129
in r28, SPL
in r29, SPH
sbiw 128, 11 ; Compute the stack frame top for foo
; Notice that 11 bytes are needed to store
; the actual parameters a, 1, j and local
; variables x, y and z
out SPH, 129 ; Adjust the stack frame pointer to point to
out SPL, 28 ; the new stack frame
std Y+1, r24 ; Pass the actual parameter 1 to a
std Y+2, 122 ; Pass the actual parameter i to b
std Y+3, 123
std Y+4, 120 ; Pass the actually parameter j to ¢
std Y+5, 121 ; End of prologue “
42

21

An Example (3/3)

foo:
; Function body here
; Epilogue starts here

ldd r24, Y+10 ; The return value of z is store in r25:124
1dd r25, Y+11
adiw 128, 11 ; Deallocate the stack frame

out SPH, 29
out SPL, 28

pop 129 ; Restore Y
pop 128
ret ; Return to main()

43

43

Recursive Functions

* A recursive function is both a caller and a callee of
itself.

* Need to check both its source caller (that is not itself)
and itself for register conflicts.

* Can be hard to compute the maximum stack space
needed for recursive function calls.

U Need to know how many times the function is nested (the
depth of the calls).

44

44

22

An Example of Recursive
Function Calls

int sum(int n);

int main(void)
main() is the caller of sum()

{ int n=100;
sum(n);
return 0;
}
void sum(int n)
{ sum() is the caller and
if (n<=0) return 0; callee of itself

else return (n+ sum(n-1));

}

45

45

Call Trees

* A call tree is a weighted directed tree G = (V, E, W) where

U V={v,, v,, ..., v, } is a set of nodes each of which
denotes an execution of a function;

U E={v,—>v;: v, calls v;} is a set of directed edges each
of which denotes the caller-callee relationship, and

O W={w, (i=1, 2, ..., n): w; is the frame size of v;} is a
set of stack frame sizes.

* The maximum size of stack space needed for the function
calls can be derived from the call tree.

46

46

23

An Example of Call Trees (1/2)

int main(void)

(.. void func2()
func1(); (S
func4();
func2();
func5();
}
void funcl() }
{...
func3();
“
}
47
An Example of Call Trees (2/2)
maln() 10
func1() 20 fun&
func3() ! fun{ fonc3()
The number in red beside a function is
its frame size in bytes.
48
48

24

Computing the Maximum Stack
Size for Function Calls

Step 1: Draw the call tree.
Step 2: Find the longest weighted path in the call tree.

The total weight of the longest weighted path
1s the maximum stack size needed for the function
calls.

49

49

An Example

mam() 10

funcl() 20 func 2()

AN

func3() 80 func4() funcS()

The longest path is main() — funcl() — func3() with the
total weight of 110. So the maximum stack space needed
for this program is 110 bytes.

50

50

25

Fibonacci Rabbits (1/2)

» Suppose a newly-born pair of rabbits, one male, one female,
are put in a field. Rabbits are able to mate at the age of one
month so that at the end of its second month a female can
produce another pair of rabbits. Suppose that our rabbits never
die and that the female always produces one new pair (one
male, one female) every month from the second month on.

* How many pairs will be there in one year?
Fibonacci’s Puzzle

Italian, mathematician Leonardo of Pisa (also known as
Fibonacci) 1202.

51

51

Fibonacci Rabbits (2/2)

* The number of pairs of rabbits in the field at the start of each
monthis 1,1,2,3,5,8, 13,21, 34,

* In general, the number of pairs of rabbits in the field at the
start of month n, denoted by F(n), is recursively defined as
follows.

F(n) = F(n-1) + F(n-2)
Where F(0) =F(1) = 1.

F(n) (n=1, 2, ...,) are called Fibonacci numbers.

52

52

26

C Solution of Fibonacci
Numbers

int month=4;
void main()
{
fib(month);
}
int fib(int n)
{
if(n ==0) return 1;
ifln==1) return 1;

return (fib(n - 1) + fib(n - 2));

}
53
53
AVR Assembler Solution
X
Return address
X2
rl6
Frame structure 17 X-3
for fib() r
X-4
28
rl6, r17,r28 and r29 are X-5
O , 29
conflicting registers.
X-6
An integer is 2 bytes n
long in WINAVR X-8
Y Empty
54
54

27

Assembly Code for main()

dnclude “m2560def.inc” ; Include definition file for ATmega2560

.cseg
month: .dw 4
main:
; Prologue
1di 128, low(RAMEND)
1di 129, high(RAMEND)
out SPH, r29 ; Initialise the stack pointer SP to point to
out SPL, r28 ; the highest SRAM address
; End of prologue
1di 30, low(month<<1) ; Let Z point to month
1di r31, high(month<<1)
lpm 124, z+ ; Actual parameter 4 is stored in 125:124
lpm 125,z
rcall fib ; Call fib(4)
; Epilogue: no return
loopforever:
rjmp loopforever 55
55
Assembly Code for fib() (1/3)
fib: push r16 ; Prologue
pushrl7 ; Save r16 and r17 on the stack
push 28 ; Save Y on the stack
push 29
in 128, SPL
in 129, SPH
sbiw 129:128,2 ; Let Y point to the bottom of the stack frame
out SPH, r29 ; Update SP so that it points to
out SPL, r28 ; the new stack top
std Y+1, r24 ; Pass the actual parameter to the formal parameter
std Y+2, 125
clrr0
cpir24, 0 ; Compare n with 0
cpc 125, 10
brne L3 ; Ifn!=0, go to L3
1di 24, 1 ; n==0
1di r25, 0 ; Return 1
rjmp L2 ; Jump to the epilogue 56
56

28

Assembly Code for fib() (2/3)

L3: clr r0
cpir24, 1 ; Compare n with 1
cpe 125, r0
brne L4 ; If n!=1 go to L4
1dir24, 1 ;n==1
1di r25, 0 ; Return 1
rjmp L2 ; Jump to the epilogue
L4: 1dd r24, Y+1 ;n>=2
1dd 25, Y+2 ; Load the actual parameter n
sbiw 24, 1 ; Pass n-1 to the callee
rcall fib ; call fib(n-1)
mov rl6, r24 ; Store the return value inr17:r16
mov rl7, 25
1dd r24, Y+1 ; Load the actual parameter n
1dd 25, Y+2
sbiw 124, 2 ; Pass n-2 to the callee
rcall fib ; call fib(n-2)
add r24,r16 ; 125:124=fib(n-1)+fib(n-2)
adc 125,117 57
57
Assembly Code for fib() (3/3)
L2:
; Epilogue
adiw r29:128,2 ; Deallocate the stack frame for fib()
out SPH, r29 ; Restore SP
out SPL, 28
pop 129 ; Restore Y
pop 128
pop r17 ; Restore r17 and r16
pop rl6
ret
58
58

29

Computing the Maximum Stack Size (1/2)

Step 1: Draw the call tree.
main() 0

fib(4) &
fi 8 8
ib(3) fib(2)
fib2) & fib(1) 8 fib(1) & fib(0)

fib(1) 8 fib(0) &

The call tree for n=4
59

59

Computing the Maximum Stack Size (2/2)

Step 1: Find the longest weighted path.

main()

fib(4) 8
fib(3) © fib2) ©
fib(2) & fib(1) 8 fib(1) & fib(0) 8

fib(1) & fib(0) &

The longest weighted path is main() — fib(4) — fib(3) —>fib(2) — fib(1)
with the total weight of 32. So a stack space of 32 bytes is needed for this

program. 60

60

30

Macros (1/2)

» Assembler programmers often need to repeat sequences of
instructions several times

* Could just type them out — tedious

* Could just copy and paste - then the specializations are
often forgotten or wrong

* Could use a subroutine, but then there is the overhead of the
call and return instructions

* Macros solve this problem

» Consider code to swap two bytes in memory:

lds 12, p
lds 13, q
sts g, 12
sts p, 13
61
61
Macros (2/2)
» Swapping p and q twice « With macro
* Without macro macro myswap
lds 12, p lds 12, p
lds 13, q ldsr3, q
sts q, 12 sts q, 12
sts p, 13 sts p, 13
1ds 12, p .endmacro
lds 13, q
sts q, 12 myswap
sts p, 13 myswap
62
62

31

AVR Macro Parameters

* There are up to 10 parameters
O Indicated by (@0 to @9 in the macro body

O @0 is the first parameter, (1 the second, and so on

* Other assemblers let you give meaningful names to
parameters

63

63
AVR Parameterised Macro
* Without macro e With macro

lds 12, p .macro change

Ids 13, q lds 12, @0

sts g, fi 1ds 13, @1

sts p, ¢ sts @1, 12

Ids 2, r sts @0, 13

Ids 13, s .endmacro

sts s, 12 change p. q

sts 1, 13 changer, s

64

64

32

Another Example

» Subtract 16-bit immediate value from 16 bit number stored in two

registers
.MACRO SUBI16 ; Start macro definition
subi @1,low(@0) ; Subtract low byte
sbei @2,high(@0) ; Subtract high byte
.ENDMACRO ; End macro definition
.CSEG ; Start code segment
SUBI16 0x1234,r16,r17 ; Sub.0x1234 from

;r17:116
» Useful for other 16-bit operations on an 8-bit processor

65

65

Two Pass Assembly Process

* We need to process the file twice

* Pass One
— Lexical and syntax analysis: checking for syntax errors
— Record all the symbols (labels etc) in a symbol table
— Expand macro calls

* Pass Two

— Use the symbol table to substitute the values for the
symbols and evaluate functions.

— Assemble each instruction

* i.e. generate machine code

66

66

33

An Example (1/4)

Anclude “m2560def.inc” ; Include definition file for ATmega2560

.equ bound =5

.def counter =r17

.dseg

Cap_word:.byte 5

.cseg
rjmp start

.org 0x003E

Low_word: .db "hello*

start:
1di zl, low(Low_word<<1)
1di zh, high(Low_word<<1)
1di yh, high(Cap_word)
1di y1, low(Cap_word)
clr counter

; Interrupt vector tables starts at 0x00
; Program starts at 0x003E

; Get the low byte of the address of "h"
; Get the high byte of the address of "h"

; counter=0 67

67
An Example (2/4)
main:
Ipm 120, z+ ; Load a letter from flash memory
subi r20, 32 ; Convert it to the capital letter
st y+, r20 ; Store the capital letter in SRAM
inc counter
cpi counter, bound
brlt main
loop: nop
rjmp loop
68
68

34

An Example (3/4)

» Pass I: Lexical and syntax analysis

Symbol Table

Symbol Value

bound 5

counter 17
Cap_word 0x0000
Low_word 0x003E
start 0x0041
main 0x0046
loop 0x004c

69

69
An Example (4/4)
* Pass 2: code generation.
Program address Machine code Assembly code
0x00000000: 40C0 rjmp start
0x0000003E: 6865 “he” ; Little endian
0x0000003F: 6C6C “11”
0x00000040: 6F00 “0”
0x00000041: ECE7 1di zl, low(Low_word<<1)
0x00000042: FOEO 1di zh, high(Low_word<<1)
0x00000043: D2EO0 1di yh, high(Cap_word)
0x00000044: COEO0 1di yl, low(Cap_word)
0x00000045: 1127 clr counter
70
70

35

Absolute Assemblers (1/2)

- The only source file contains all the source code of the
program

* Programmers use .org to tell the assembler the starting
address of a segment (data segment or code segment)

* Whenever any change is made in the source program,
all code must be assembled.

* A downloader transfers an executable file (machine
code) to the target system.

Absolute Assemblers (2/2)

Source file with location
information (NAME.ASM)

Absolute

assembler
Absolute |
Assembler Executable file
Operation (NAME.EXE)

v

Loader Program

l

Computer
memory

72

72

36

Relocatable Assemblers (1/2)

+ The program may be split into multiple source files
* Each source file can be assembled separately

* Each file is assembled into an object file where some
addresses may not be resolved

* A linker program is needed to resolve all unresolved
addresses and make all object files into a single
executable file

73

73
Relocatable Assemblers (2/2)
Source file 1 Source file 2
(MODULE1.ASM (MODULE2.ASM
Relocatable Relocatable
assembler assembler
Object filel Object file2
(MODULE1.0BJ (MODULE2.0BJ
74
74

37

- Takes all object files and links them together and locates

Linker (1/2)

all addresses

» Works together with relocatable assembler

75

75
Linker (2/2)
Source file 1 Source file 2
(MODULE1.ASM (MODULE1.ASM
Relocatable Relocatable
assembler assembler
Object filel Object file2 Library of object
(MODULEI.OBJ (MODULEZ.OBJ files (FILE.LIB)
Code and data Linker
location - program
information l
Executable file
(NAME.EXE) 76
76

38

Loader

+ Puts an executable file into the memory of the
computer.

* May take many forms.
O Part of an operating system.

U A downloader program that takes an
executable file created on one computer and
puts it into the target system.

U A system that burns a programmable read-only

memory (ROM).
77
77
Reading
1. Chap. 5. Microcontrollers and Microcomputers
2. AVR Assembler
http://www.atmel.com/webdoc/avrassembler/
78
78

39

