
1

COMP2121: Microprocessors and
Interfacing

AVR Assembly Programming (III)
Functions, Macros, and Assembly

Process

http://www.cse.unsw.edu.au/~cs2121

Lecturer: Hui Wu

Term 2, 2019

2

Overview
• Stack

• Variable types

• Memory sections in C

• Parameter passing

• Stack frames

• Implementation of functions

• Recursive functions

• Computing the stack size for function calls

• Macros

• Assembly process

1

2

2

3

Stacks

• A stack is a contiguous area of memory that supports two
operations:

 push: push a data item on the top of the stack

 pop: pop the data item on top of the stack to a register

• LIFO-First In, Last Out

• Every processor has a stack of some kind

 Used for function (subroutine) calls and interrupts

 Used to store local variables in C

• A special register named Stack Pointer (SP) stores the
address of the stack top

4

Push Register on Stack

• Syntax: push Rr
• Operands: Rr{r0, r1, …, r31}
• Operation: (SP) Rr

SP SP –1
• Flag affected: None
• Encoding: 1001 001d dddd 1111
• Words: 1
• Cycles: 2
• Example

call routine ; Call subroutine
...

routine: push r14 ; Save r14 on the stack
push r13 ; Save r13 on the stack
...
pop r13 ; Restore r13
pop r14 ; Restore r14
ret ; Return from subroutine

3

4

3

5

Pop Register from Stack

• Syntax: pop Rd
• Operands: Rd{r0, r1, …, r31}
• Operation: SP SP +1

Rd (SP)
• Flag affected: None
• Encoding: 1000 000d dddd 1111
• Words: 1
• Cycles: 2
• Example

call routine ; Call subroutine
...

routine: push r14 ; Save r14 on the stack
push r13 ; Save r13 on the stack
...
pop r13 ; Restore r13
pop r14 ; Restore r14
ret ; Return from subroutine

6

5

6

4

7

8

7

8

5

9

10

9

10

6

11

12

11

12

7

13

14

13

14

8

15

16

15

16

9

17

18

Types of Variables in C

1. Global variables: The variable that are declared outside a
function

 Exist during the execution of the program

2 Local variables: The variables that are declared in a
function.

 Exist during the execution of the function only

3. Static variables.

 Can be either global or local.

 A global static variable is valid only within the file where it is
declared

 A local static variable still exists after the function returns

17

18

10

19

Variable Types and Memory Sections

• Global variables occupy their memory space during the
execution of the program

 Need the static memory which exists during the program’s lifetime

• Static local variables still occupy their memory space after
the function returns.

 Also need the static memory which exists after the function returns.

• Local variables occupy their memory space only during the
execution of the function.

 Need the dynamic memory which exists only during the execution of
the function

• So the entire memory space need be partitioned into different
sections to be more efficiently utilized.

20

An Example (1/3)

#inlcude <stdio.h>

int x, y; /* Global variables */

static int b[10]; /* Static global array */

void auto_static(void)

{

int autovar=1; /* Local variable */

static int staticvar=1; /* Static local variable */

printf(autovar = %i, staticvar = %i\n, autovar, staticvar);

++autovar;

++staticvar;

}

19

20

11

21

An Example (2/3)

int main(void)

{

int i; /* Local variable */

for (i=0; i<5; i++)

auto_static();

return 0;

}

22

An Example (3/3)

Program output:

Autovar = 1, staticvar = 1

Autovar = 1, staticvar = 2

Autovar = 1, staticvar = 3

Autovar = 1, staticvar = 4

Autovar = 1, staticvar = 5

21

22

12

23

Memory Sections in C for General
Microprocessors

• Heap: Used for dynamic memory applications such as
malloc() and calloc()

• Stack: Used to store return address, actual parameters,
conflict registers and local variables and other information.

• Uninitialized data section .bss,

 contains all uninitialized global or static local variables.

• Data section .data.

 Contains all initialized global or static local variables

• Text section .text

 Contains code

24

Memory Sections in WINAVR (C
for AVR)

• Additional EEPROM section .eeprom

 Contains constants in eeprom

• The text section .text in WINAVR includes two subsections
.initN and .finiN

 .initN contains the startup code which initializes the stack
and copies the initialized data section .data from flash to
SRAM.

 .finiN is used to define the exit code executed after
return from main() or a call to exit().

23

24

13

25

C Functions
void main(void) {

int i, j, k, m;
i = mult(j,k);
... ;
m = mult(i,i);
…;

}
int mult (int mcand, int mlier)
{

int product = 0;
while (mlier > 0) {
product = product + mcand;
mlier = mlier -1;

}
return product;

}

Caller

Callee

Actual
Parameters

26

Two Parameter Passing Approaches

• Pass by value

 Pass the value of an actual parameter to the callee

 Not efficient for structures and array

 Need to pass the value of each element in the structure or
array

• Pass by reference

 Pass the address of the actual parameter to the callee

 Efficient for structures and array passing

25

26

14

27

Parameter Passing in C

• Pass by value for scalar variables such as char, int and float.

• Pass by reference for non-scalar variables i.e. array and
structures.

28

Implementation of C Functions

Issues:

• How to pass the actual parameters by value to a function?

• How to pass the actual parameters by reference to a
function?

• Where to get the return value?

• How to allocate stack memory to local variables?

• How to deallocate stack memory after a function returns?

• How to handle register conflicts?

Rules are needed between caller and callee.

27

28

15

29

Register Conflicts

• If a register is used in both caller and callee and the caller
needs its old value after the return from the callee, then a
register conflict occurs. The register is called a conflicting
register.

• Compilers or assembly programmers need to check for
register conflicts.

• Save conflicting registers on the stack.

• Caller or callee or both can save conflicting registers.

 In WINAVR, callee saves conflicting registers.

30

Parameter Passing and Return
Value

• May use general registers to store part of actual
parameters and push the rest of parameters on the stack.

 WINAVR uses general registers up to r24 to store actual
parameters

 Actual parameters are eventually passed to the formal parameters
stored on the stack.

• The return value need be stored in designated registers

 WINAVR uses r25:r24 to store the return value.

29

30

16

31

Stack Structure

• A stack consists of stack frames.

• A stack frame is created whenever a function is
called.

• A stack frame is freed whenever the function
returns.

• What’s inside a stack frame?

32

Stack Frame

• Return address

 Used when the function returns

• The values of conflicting registers when the
function is called

 Need to restore the old contents of these registers when
the function returns

 One conflicting register is the stack frame pointer

• Parameters (arguments)

• Local variables

A typical stack frame consists of the following components:

31

32

17

33

Implementation Considerations

• Local variables and parameters need be stored
contiguously on the stack for easy accesses.

• In which order the local variables or parameters
stored on the stack? In the order that they appear in the
program from left to right? Or the reverse order?

 C compiler uses the reverse order.

• Need a stack frame register to point to either the base
(starting address) or the top of the stack frame

 Points to the top of the stack frame if the stack grows
downwards. Otherwise, points to the base of the stack frame
(Why?)

WINAVR uses Y (r29: r28) as a stack frame register.

34

An Sample Stack Frame
Structure for AVR

Stack frame

for main()

Return address

Conflicting registers

Local variable n

…

Local variable 1

Parameter m

…

Parameter 1

Empty

int main(void)

{ …

foo(arg1, arg2, …, argm);

}

void foo(arg1, arg2, …, argm)

{ int var1, var2, …, varn;

…

}

Y

Stack
frame for

foo()

RAMEND

33

34

18

35

A Template for Caller

Caller:

1. Store a subset of actual parameters in designated
registers and the rest of actual parameters on the
stack.

2. Call the callee.

36

A Template for Callee (1/3)

Callee:

1. Prologue

2. Function body

3. Epilogue

35

36

19

37

A Template for Callee (2/3)

Prologue:

• Store conflicting registers, including the stack frame
register Y, on the stack by using push

• Pass the actual parameters to the formal parameters on the
stack

• Update the stack frame register Y to point to the top of its
stack frame

Function body:

Does the normal task of the function.

38

A Template for Callee (3/3)

Epilogue:

1. Store the return value in designated registers r25:r24.

2. Deallocate local variables and parameters by updating the
stack pointer SP.

 SP=SP + the size of all parameters and local variables.

3. Restore conflicting registers from the stack by using pop

 The conflicting registers must be popped in the reverse order in
which they are pushed on the stack.

 The stack frame register of the caller is also restored.

 Step 2 and Step 3 together deallocate the stack frame.

4. Return to the caller by using ret.

37

38

20

39

An Example

int foo(char a, int b, int c);

int main()
{ int i, j;

i=0;
j=300;
foo(1, i, j);
return 0;

}

int foo(char a, int b, int c)
{ int x, y, z;

x=a+b;
y=c–a;
z=x+y;
return z;

}

40

Stack frames for main() and foo()

j

i

Return address

r28

r29

z

y

x

c

b

a

Empty

RAMEND

Stack frame
pointer Y for
main()

Stack frame
pointer Y for
foo()

Local
variables

Parameters

Conflicting register
Y (r29:r28)

39

40

21

41

An Example (1/3)
.include “m2560def.inc” ; Include definition file for ATmega2560
.cseg
main: ldi r28, low(RAMEND-4) ; 4 bytes to store local variables i and j

ldi r29, high(RAMEND-4) ; The size of each integer is 2 bytes
out SPH, r29 ; Adjust stack pointer so that it points to
out SPL, r28 ; the new stack top.
clr r0 ; The next three instructions implement i=0
std Y+1, r0 ; The address of i in the stack is Y+1
std Y+2, r0
ldi r24, low(300) ; The next four instructions implement j=300
ldi r25, high(300)
std Y+3, r24
std Y+4, r25
ldd r20,Y+3 ; r21:r20 keep the actual parameter j
ldd r21,Y+4
ldd r22,Y+1 ; r23:r22 keep the actual parameter i
ldd r23,Y+2
ldi r24,low(1) ; r24 keeps the actual parameter 1
rcall foo ; Call foo
…

42

An Example (2/3)

foo: ; Prologue: frame size=11 (excluding the stack frame
; space for storing return address and registers)

push r28 ; Save r28 and r29 in the stack
push r29
in r28, SPL
in r29, SPH
sbiw r28, 11 ; Compute the stack frame top for foo

; Notice that 11 bytes are needed to store
; the actual parameters a, i, j and local
; variables x, y and z

out SPH, r29 ; Adjust the stack frame pointer to point to
out SPL, r28 ; the new stack frame
std Y+1, r24 ; Pass the actual parameter 1 to a
std Y+2, r22 ; Pass the actual parameter i to b
std Y+3, r23
std Y+4, r20 ; Pass the actually parameter j to c
std Y+5, r21 ; End of prologue

41

42

22

43

An Example (3/3)

foo:
… ; Function body here

; Epilogue starts here
ldd r24, Y+10 ; The return value of z is store in r25:r24
ldd r25, Y+11
adiw r28, 11 ; Deallocate the stack frame
out SPH, r29
out SPL, r28
pop r29 ; Restore Y
pop r28
ret ; Return to main()

44

Recursive Functions

• A recursive function is both a caller and a callee of
itself.

• Need to check both its source caller (that is not itself)
and itself for register conflicts.

• Can be hard to compute the maximum stack space
needed for recursive function calls.

 Need to know how many times the function is nested (the
depth of the calls).

43

44

23

45

An Example of Recursive
Function Calls

int sum(int n);

int main(void)

{ int n=100;

sum(n);

return 0;

}

void sum(int n)

{

if (n<=0) return 0;

else return (n+ sum(n-1));

}

main() is the caller of sum()

sum() is the caller and
callee of itself

46

Call Trees

• A call tree is a weighted directed tree G = (V, E, W) where

 V={v1, v2, …, vn} is a set of nodes each of which
denotes an execution of a function;

 E={vivj: vi calls vj} is a set of directed edges each
of which denotes the caller-callee relationship, and

W={wi (i=1, 2, …, n): wi is the frame size of vi} is a
set of stack frame sizes.

• The maximum size of stack space needed for the function
calls can be derived from the call tree.

45

46

24

47

An Example of Call Trees (1/2)

int main(void)

{ …

func1();

…

func2();

}

void func1()

{ …

func3();

…

}

void func2()

{ …

func4();

…

func5();

…

}

48

An Example of Call Trees (2/2)

main()

func2()func1()

func3() func4() func5()

10

20 60

80 10 30

The number in red beside a function is
its frame size in bytes.

47

48

25

49

Computing the Maximum Stack
Size for Function Calls

Step 1: Draw the call tree.

Step 2: Find the longest weighted path in the call tree.

The total weight of the longest weighted path
is the maximum stack size needed for the function
calls.

50

main()

func2()func1()

func3() func4() func5()

10

20 60

80 10 30

The longest path is main() func1() func3() with the
total weight of 110. So the maximum stack space needed
for this program is 110 bytes.

An Example

49

50

26

51

Fibonacci Rabbits (1/2)

• Suppose a newly-born pair of rabbits, one male, one female,
are put in a field. Rabbits are able to mate at the age of one
month so that at the end of its second month a female can
produce another pair of rabbits. Suppose that our rabbits never
die and that the female always produces one new pair (one
male, one female) every month from the second month on.

• How many pairs will be there in one year?

Fibonacci’s Puzzle

Italian, mathematician Leonardo of Pisa (also known as
Fibonacci) 1202.

52

Fibonacci Rabbits (2/2)

• The number of pairs of rabbits in the field at the start of each
month is 1, 1, 2, 3, 5, 8, 13, 21, 34,
• In general, the number of pairs of rabbits in the field at the
start of month n, denoted by F(n), is recursively defined as
follows.

F(n) = F(n-1) + F(n-2)

Where F(0) = F(1) = 1.

F(n) (n=1, 2, …,) are called Fibonacci numbers.

51

52

27

53

C Solution of Fibonacci
Numbers

int month=4;

void main()

{

fib(month);

}

int fib(int n)

{

if(n == 0) return 1;

if(n == 1) return 1;

return (fib(n - 1) + fib(n - 2));

}

54

AVR Assembler Solution

Return address

r16

r17

r28

r29

n

Empty

Frame structure
for fib()

Y

X

X–2

X–3

X–4

X–5

X–6

X–8

r16, r17, r28 and r29 are
conflicting registers.

An integer is 2 bytes
long in WINAVR

53

54

28

55

Assembly Code for main()
.include “m2560def.inc” ; Include definition file for ATmega2560
.cseg
month: .dw 4
main:

; Prologue
ldi r28, low(RAMEND)
ldi r29, high(RAMEND)
out SPH, r29 ; Initialise the stack pointer SP to point to
out SPL, r28 ; the highest SRAM address

; End of prologue
ldi r30, low(month<<1) ; Let Z point to month
ldi r31, high(month<<1)
lpm r24, z+ ; Actual parameter 4 is stored in r25:r24
lpm r25, z
rcall fib ; Call fib(4)

; Epilogue: no return
loopforever:

rjmp loopforever

56

Assembly Code for fib() (1/3)
fib: push r16 ; Prologue

push r17 ; Save r16 and r17 on the stack
push r28 ; Save Y on the stack
push r29
in r28, SPL
in r29, SPH
sbiw r29:r28, 2 ; Let Y point to the bottom of the stack frame
out SPH, r29 ; Update SP so that it points to
out SPL, r28 ; the new stack top
std Y+1, r24 ; Pass the actual parameter to the formal parameter
std Y+2, r25
clr r0
cpi r24, 0 ; Compare n with 0
cpc r25, r0
brne L3 ; If n!=0, go to L3
ldi r24, 1 ; n==0
ldi r25, 0 ; Return 1
rjmp L2 ; Jump to the epilogue

55

56

29

57

Assembly Code for fib() (2/3)
L3: clr r0

cpi r24, 1 ; Compare n with 1
cpc r25, r0
brne L4 ; If n!=1 go to L4
ldi r24, 1 ; n==1
ldi r25, 0 ; Return 1
rjmp L2 ; Jump to the epilogue

L4: ldd r24, Y+1 ; n>=2
ldd r25, Y+2 ; Load the actual parameter n
sbiw r24, 1 ; Pass n-1 to the callee
rcall fib ; call fib(n-1)
mov r16, r24 ; Store the return value in r17:r16
mov r17, r25
ldd r24, Y+1 ; Load the actual parameter n
ldd r25, Y+2
sbiw r24, 2 ; Pass n-2 to the callee
rcall fib ; call fib(n-2)
add r24, r16 ; r25:r24=fib(n-1)+fib(n-2)
adc r25, r17

58

Assembly Code for fib() (3/3)

L2:
; Epilogue

adiw r29:r28, 2 ; Deallocate the stack frame for fib()
out SPH, r29 ; Restore SP
out SPL, r28
pop r29 ; Restore Y
pop r28
pop r17 ; Restore r17 and r16
pop r16
ret

57

58

30

59

Computing the Maximum Stack Size (1/2)

Step 1: Draw the call tree.
main()

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

0

8

88

88

88

8 8

The call tree for n=4

60

Computing the Maximum Stack Size (2/2)

Step 1: Find the longest weighted path.

main()

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

0

8

88

88

88

8 8

The longest weighted path is main() fib(4) fib(3) fib(2) fib(1)
with the total weight of 32. So a stack space of 32 bytes is needed for this
program.

59

60

31

61

Macros (1/2)

• Assembler programmers often need to repeat sequences of
instructions several times
• Could just type them out – tedious
• Could just copy and paste - then the specializations are
often forgotten or wrong
• Could use a subroutine, but then there is the overhead of the
call and return instructions
• Macros solve this problem
• Consider code to swap two bytes in memory:

lds r2, p
lds r3, q
sts q, r2
sts p, r3

62

Macros (2/2)
• Swapping p and q twice
• Without macro

lds r2, p
lds r3, q
sts q, r2
sts p, r3

lds r2, p
lds r3, q
sts q, r2
sts p, r3

• With macro
.macro myswap

lds r2, p
lds r3, q
sts q, r2
sts p, r3

.endmacro

myswap
myswap

61

62

32

63

• There are up to 10 parameters

 Indicated by @0 to @9 in the macro body

@0 is the first parameter, @1 the second, and so on

• Other assemblers let you give meaningful names to
parameters

AVR Macro Parameters

64

AVR Parameterised Macro

• Without macro

lds r2, p
lds r3, q
sts q, r2
sts p, r3

lds r2, r
lds r3, s
sts s, r2
sts r, r3

• With macro

.macro change

lds r2, @0

lds r3, @1

sts @1, r2

sts @0, r3

.endmacro

change p, q

change r, s

63

64

33

65

Another Example

• Subtract 16-bit immediate value from 16 bit number stored in two
registers

.MACRO SUBI16 ; Start macro definition
subi @1,low(@0) ; Subtract low byte
sbci @2,high(@0) ; Subtract high byte

.ENDMACRO ; End macro definition

.CSEG ; Start code segment
SUBI16 0x1234,r16,r17 ; Sub.0x1234 from

; r17:r16
• Useful for other 16-bit operations on an 8-bit processor

66

Two Pass Assembly Process

• We need to process the file twice

• Pass One

– Lexical and syntax analysis: checking for syntax errors

– Record all the symbols (labels etc) in a symbol table

– Expand macro calls

• Pass Two

– Use the symbol table to substitute the values for the
symbols and evaluate functions.

– Assemble each instruction

• i.e. generate machine code

65

66

34

67

An Example (1/4)
.include “m2560def.inc” ; Include definition file for ATmega2560

.equ bound =5

.def counter =r17

.dseg

Cap_word:.byte 5

.cseg

rjmp start ; Interrupt vector tables starts at 0x00

.org 0x003E ; Program starts at 0x003E

Low_word: .db "hello“

start:

ldi zl, low(Low_word<<1) ; Get the low byte of the address of "h"

ldi zh, high(Low_word<<1) ; Get the high byte of the address of "h"

ldi yh, high(Cap_word)

ldi yl, low(Cap_word)

clr counter ; counter=0

68

An Example (2/4)

main:

lpm r20, z+ ; Load a letter from flash memory

subi r20, 32 ; Convert it to the capital letter

st y+, r20 ; Store the capital letter in SRAM

inc counter

cpi counter, bound

brlt main

loop: nop

rjmp loop

67

68

35

69

An Example (3/4)

• Pass 1: Lexical and syntax analysis

Symbol Value
bound 5

counter 17

Cap_word 0x0000

Low_word 0x003E

start 0x0041

main 0x0046

loop 0x004c

Symbol Table

70

An Example (4/4)

• Pass 2: code generation.

Program address Machine code Assembly code

0x00000000: 40C0 rjmp start
…

0x0000003E: 6865 “he” ; Little endian
0x0000003F: 6C6C “ll”
0x00000040: 6F00 “o”
0x00000041: ECE7 ldi zl, low(Low_word<<1)
0x00000042: F0E0 ldi zh, high(Low_word<<1)
0x00000043: D2E0 ldi yh, high(Cap_word)
0x00000044: C0E0 ldi yl, low(Cap_word)
0x00000045: 1127 clr counter

…

69

70

36

71

Absolute Assemblers (1/2)

• The only source file contains all the source code of the
program

• Programmers use .org to tell the assembler the starting
address of a segment (data segment or code segment)

• Whenever any change is made in the source program,
all code must be assembled.

• A downloader transfers an executable file (machine
code) to the target system.

72

Absolute Assemblers (2/2)

Source file with location
information (NAME.ASM)

Absolute
assembler

Executable file
(NAME.EXE)

Loader Program

Computer
memory

Absolute
Assembler
Operation

71

72

37

73

Relocatable Assemblers (1/2)

• The program may be split into multiple source files

• Each source file can be assembled separately

• Each file is assembled into an object file where some
addresses may not be resolved

• A linker program is needed to resolve all unresolved
addresses and make all object files into a single
executable file

74

Relocatable Assemblers (2/2)

Source file 1
(MODULE1.ASM

Source file 2
(MODULE2.ASM

Relocatable
assembler

Relocatable
assembler

Object file1
(MODULE1.OBJ

Object file2
(MODULE2.OBJ

73

74

38

75

Linker (1/2)

• Takes all object files and links them together and locates
all addresses

• Works together with relocatable assembler

76

Linker (2/2)

Source file 1
(MODULE1.ASM

Source file 2
(MODULE1.ASM

Relocatable
assembler

Relocatable
assembler

Object file1
(MODULE1.OBJ

Object file2
(MODULE2.OBJ

Linker
program

Library of object
files (FILE.LIB)

Executable file
(NAME.EXE)

Code and data
location

information

75

76

39

77

Loader

• Puts an executable file into the memory of the
computer.

• May take many forms.

 Part of an operating system.

 A downloader program that takes an
executable file created on one computer and
puts it into the target system.

 A system that burns a programmable read-only
memory (ROM).

78

Reading

1. Chap. 5. Microcontrollers and Microcomputers

2. AVR Assembler
http://www.atmel.com/webdoc/avrassembler/

77

78

