Exercise sheet 4a – Solutions and Hints
COMP6741: Parameterized and Exact Computation
Serge Gaspers
Semester 2, 2018

Exercise 1. A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction (AND) of disjunctions (OR) of literals (a Boolean variable or its negation). A HORN formula is a CNF formula where each clause contains at most one positive literal. For a CNF formula F and an assignment $\tau: S \to \{0, 1\}$ to a subset S of its variables, the formula $F[\tau]$ is obtained from F by removing each clause that contains a literal that evaluates to 1 under S, and removing all literals that evaluate to 0 from the remaining clauses.

HORN-Backdoor Detection
Input: A CNF formula F and an integer k.
Parameter: k
Question: Is there a subset S of the variables of F with $|S| \leq k$ such that for each assignment $\tau: S \to \{0, 1\}$, the formula $F[\tau]$ is a HORN formula?

Example: $(\neg a \lor b \lor c) \land (b \lor \neg c \lor \neg d) \land (a \lor b \lor \neg c) \land (\neg b \lor c \lor \neg e)$ with $k = 1$ is a Yes-instance, certified by $S = \{b\}$.

- Show that HORN-Backdoor Detection is FPT using the fact that VERTEX COVER is FPT.

Hint.
- Show the following: if two distinct positive literals occur in a same clause, then a HORN-backdoor must contain at least one of the corresponding variables.
- Construct a parameterized reduction to VERTEX COVER based on these pairwise conflicts.

Exercise 2. Show that Weighted Circuit Satisfiability $\in X\text{P}$.

Hint.
- There are n^k assignments of weight k, where n is the number of input gates.

Exercise 3. Recall that a k-coloring of a graph $G = (V, E)$ is a function $f: V \to \{1, 2, \ldots, k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

Multicolor Clique
Input: A graph $G = (V, E)$, an integer k, and a k-coloring of G
Parameter: k
Question: Does G have a clique of size k?

- Show that Multicolor Clique is W[1]-hard.

Hint: Reduce from CLIQUE, and create k copies of V, each one being an independent set in G'. Add edges to enforce constraints that a clique of size k in G' corresponds to a clique of size k in G, and vice-versa.

Solution. The proof is by a parameterized reduction from CLIQUE.

Construction. Let $(G = (V, E), k)$ be an instance for CLIQUE. We construct an instance $(G' = (V', E'), k', f)$ for Multicolor Clique as follows. For each $v \in V$, create k vertices $v(1), \ldots, v(k)$ and add them to V'. For every
pair \(u(i), v(j) \in V'\) with \(i \neq j\), add \(u(i)v(j)\) to \(E'\) if and only if \(uv \in E\). Set \(k' := k\). Set \(f(v(i)) = i\) for each \(v \in V\) and \(i \in \{1, \ldots, k\}\).

Equivalence. \(G\) has a clique of size \(k\) if and only if \(G'\) has a clique of size \(k\).

\((\Rightarrow):\) Let \(S = \{s_1, \ldots, s_k\}\) be a clique in \(G\). Then \(S' = \{s_1(1), s_2(2), \ldots, s_k(k)\}\) is a clique in \(G'\) since \(s_is_j \in E\) implies \(s_i(s_j) \in E'\) in our construction.

\((\Leftarrow):\) Let \(S'\) be a clique of size \(k\) in \(G'\). Since for each \(i \in \{1, \ldots, k\}\), \(\{v_i : v \in V\}\) is an independent set in \(G'\), \(S'\) contains exactly one vertex from each color class of \(f\). Denote \(S' = \{s'_1(1), \ldots, s'_k(k)\}\). Then, \(S = \{s_1, \ldots, s_k\}\) is a clique in \(G\).

Parameter. \(k' \leq k\).

Running time. The construction can clearly be done in FPT time, and even in polynomial time.

Exercise 4. A set system \(S\) is a pair \((V, H)\), where \(V\) is a finite set of elements and \(H\) is a set of subsets of \(V\). A set cover of a set system \(S = (V, H)\) is a subset \(X\) of \(H\) such that each element of \(V\) is contained in at least one of the sets in \(X\), i.e., \(\bigcup_{Y \in X} Y = V\).

<table>
<thead>
<tr>
<th>Set Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A set system (S = (V, H)) and an integer (k)</td>
</tr>
<tr>
<td>Parameter: (k)</td>
</tr>
<tr>
<td>Question: Does (S) have a set cover of cardinality at most (k)?</td>
</tr>
</tbody>
</table>

- Show that **Set Cover** is W[2]-hard.

Hint. Reduce from **Dominating Set**:

- add an element for each vertex and
- add a set for each vertex, containing all the vertices in its closed neighborhood.

Exercise 5. A hitting set of a set system \(S = (V, H)\) is a subset \(X\) of \(V\) such that \(X\) contains at least one element of each set in \(H\), i.e., \(X \cap Y \neq \emptyset\) for each \(Y \in H\).

<table>
<thead>
<tr>
<th>Hitting Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A set system (S = (V, H)) and an integer (k)</td>
</tr>
<tr>
<td>Parameter: (k)</td>
</tr>
<tr>
<td>Question: Does (S) have a hitting set of size at most (k)?</td>
</tr>
</tbody>
</table>

- Show that **Hitting Set** is W[2]-hard.

Hint: Exploit a duality between sets and elements in set covers and hitting sets.

Solution sketch. Reduce from **Set Cover**. Let \((S = (V, H), k)\) be an instance for **Set Cover**. Construct an instance \((S' = (V', H'), k)\) for **Hitting Set**:

- \(V' := H\)
- \(H' := \{\{h \in H : v \in h\} : v \in V\}\)