
COMP9020 Lecture 7
Session 2, 2017

Induction and Recursion

1

Administrivia

Guidelines for good mathematical writing

Assignment 1 Solutions now available; marks available soon

Assignment 2 available on Saturday, due October 1, 23:59

Quiz 7 available tonight

2

https://www.math.hmc.edu/~su/math131/good-math-writing.pdf

Lecture 6 recap

Logic:

Boolean algebras

CNF/DNF

Karnaugh maps

3

Lecture 6 recap

Boolean Algebra: (A,∨,∧,′ , 0, 1), where

A is a set

∨, ∧ are binary operations (functions A× A→ A)
′ is a unary operation (function A→ A)

0 and 1 are special elements of A (constants)

Operations and constants satisfy certain properties

Examples:

Two-valued logic: ({>,⊥},∨,∧,¬,⊥,>)

Subsets of X : (Pow(X),∪,∩, ·c , ∅,X)

NB

“Boolean algebra” is like a Java interface; examples are like
Objects implementing the interface.

4

Lecture 6 recap

Boolean Algebra: (A,∨,∧,′ , 0, 1), where

A is a set

∨, ∧ are binary operations (functions A× A→ A)
′ is a unary operation (function A→ A)

0 and 1 are special elements of A (constants)

Operations and constants satisfy certain properties

Examples:

Two-valued logic: ({>,⊥},∨,∧,¬,⊥,>)

Subsets of X : (Pow(X),∪,∩, ·c , ∅,X)

NB

“Boolean algebra” is like a Java interface; examples are like
Objects implementing the interface.

5

Lecture 6 recap

Induction:

Basic induction

Induction steps > 1

Strong induction

Backward induction

Infinite descent

Forward-backward induction

Structural induction

6

Basic induction

Example

Prove that for all n ∈ N if X has n elements then Pow(X) has 2n

elements.

7

Infinite descent
Example

The square root of 2 is irrational.

Proof.

Suppose that
√

2 = p/q for some p and q. Assume p, q small as
possible [in, e.g. product order])
Then p2 = 2q2.
Since p2 is even p must be even: p = 2r .
Therefore p2 = (2r)2 = 4r2 = 2q2.
Therefore q2 = 2r2, so q must be even: q = 2s.
So, from p/q we constructed an equivalent solution r/s = p/q
with r < p, s < q → infinite descent.

NB

The same idea can be used to show that, for any integer, if the
square root is not also an integer then it must be irrational.

8

Recursion

Fundamental concept in Computer Science

Recursion in algorithms: Solving problems by reducing to
smaller cases

Factorial
gcd computation
Towers of Hanoi
Mergesort

Recursion in data structures: Finite definitions of arbitrarily
large objects

Natural numbers
Words
Formulas
(Rooted) trees, especially binary trees

Analysis of recursion: Proving properties

Recursive sequences (e.g. Fibonacci sequence)
Structural induction

9

Recursion

Fundamental concept in Computer Science

Recursion in algorithms: Solving problems by reducing to
smaller cases

Factorial
gcd computation
Towers of Hanoi
Mergesort

Recursion in data structures: Finite definitions of arbitrarily
large objects

Natural numbers
Words
Formulas
(Rooted) trees, especially binary trees

Analysis of recursion: Proving properties

Recursive sequences (e.g. Fibonacci sequence)
Structural induction

10

Recursion

Fundamental concept in Computer Science

Recursion in algorithms: Solving problems by reducing to
smaller cases

Factorial
gcd computation
Towers of Hanoi
Mergesort

Recursion in data structures: Finite definitions of arbitrarily
large objects

Natural numbers
Words
Formulas
(Rooted) trees, especially binary trees

Analysis of recursion: Proving properties

Recursive sequences (e.g. Fibonacci sequence)
Structural induction

11

Recursion

Consists of a basis (B) and recursive process (R).
A sequence/object/algorithm is recursively defined when (typically)
(B) some initial terms are specified, perhaps only the first one;
(R) later terms stated as functional expressions of the earlier terms.

NB

(R) also called recurrence formula (especially when dealing
with sequences)

12

Recursion in programs/algorithms

13

Example: Factorial

Factorial:
(B) 0! = 1
(R) (n + 1)! = (n + 1) · n!

fact(n):
(B) if(n = 0): 1
(R) else: fact(n − 1)

14

Example: Euclid’s gcd algorithm

gcd(m, n) =


m if m = n

gcd(m − n, n) if m > n

gcd(m, n −m) if m < n

15

Example: Towers of Hanoi

There are 3 towers (pegs)

n disks of decreasing size placed on the first tower

You need to move all disks from the first tower to the last
tower

Larger disks cannot be placed on top of smaller disks

The third tower can be used to temporarily hold disks

16

Example: Towers of Hanoi

17

Example: Towers of Hanoi

18

Example: Towers of Hanoi

19

Example: Towers of Hanoi

20

Example: Towers of Hanoi

21

Example: Towers of Hanoi

22

Example: Towers of Hanoi

23

Example: Towers of Hanoi

24

Example: Towers of Hanoi

25

Example: Towers of Hanoi

26

Example: Towers of Hanoi

27

Example: Towers of Hanoi

28

Example: Mergesort

A list of 1 element is sorted

A list of n elements can be sorted by recursively sorting each
half (two lists of n/2 elements) and merging the lists together.

mergesort(A):
(B) if(|A| = 1): return A

else:
(R) L = mergesort(A[1..n/2])
(R) R = mergesort(A[n/2..n])

return merge(L,R)

29

Recursive data types

30

Example: Natural numbers

A natural number is either 0 (B) or one more than a natural
number (R).

Formal definition of N:

(B) 0 ∈ N
(R) If n ∈ N then (n + 1) ∈ N

31

Example: Words over Σ

A word over an alphabet Σ is either λ (B) or a symbol from Σ
followed by a word (R).

Formal definition of Σ∗:

(B) λ ∈ Σ∗

(R) If w ∈ Σ∗ then a · w ∈ Σ∗ for all a ∈ Σ

NB

This matches the recursive definition of a List data type.

32

Example: Propositional formulas

A well-formed formula (wff) over a set of propositional variables,
Prop is defined as:

(B) > is a wff

(B) ⊥ is a wff

(B) p is a wff for all p ∈ Prop

(R) If ϕ is a wff then ¬ϕ is a wff

(R) If ϕ and ψ are wffs then:

(ϕ ∧ ψ),
(ϕ ∨ ψ),
(ϕ→ ψ), and
(ϕ↔ ψ) are wffs.

33

Example: Rooted trees

A binary (rooted) tree is either empty (B), or it is a node with two
subtrees as children (R). (Note: a child may be empty!)

•

• •

• • •

A rooted tree is either a leaf – i.e. has no children (B), or it has
several (rooted) subtrees as children (R).

T = 〈r ; T1,T2, . . . ,Tk〉

34

Functions over recursive datatypes

Recursive definitions of datatypes naturally lead to recursively
defined functions (or programs):

Example

Factorial function fact : N→ N

length : Σ∗ → N can be formally defined as:

length(λ) = 0

length(a · w) = 1 + length(w)

A program/function for counting the leaves of a rooted tree:

leaves(〈r〉) = 1

leaves(〈r ; T1,T2, . . . ,Tk〉) =
leaves(T1) + leaves(T2) + . . .+ leaves(Tk)

35

Functions over recursive datatypes

Example

“Evaluation” of a propositional formula

A program/function for sorting (insertion sort): sort : Σ∗ → Σ∗ :

sort(λ) = λ

sort(a · w) = insert(a, sort(w))

Another example (quicksort): sort : Σ∗ → Σ∗ :

sort(λ) = λ

sort(a ·w) = sort(w<) · a · sort(w>) where w< are the symbols
of w less than a and w> is the symbols of w greater than a.

36

Analysing recursive definitions

37

Recursive sequences

Asking questions like “how many moves?” leads to recursively
defined functions from N to N. These are also known as recursive
sequences.

Example

Fibonacci numbers:
(B) fib(1) = 1
(B) fib(2) = 1
(R) fib(n) = fib(n − 1) + fib(n − 2)

38

Example: Towers of Hanoi

How many moves to move n disks, M(n)?
M(1) = 1, M(2) = 3, M(n) =?

Using the recursive solution:

M(n) = M(n − 1) + 1 + M(n − 1) = 2.M(n − 1) + 1

Formula for M(n)?

M(n) = 2n+1 − 1

Proof?

39

Example: Towers of Hanoi

How many moves to move n disks, M(n)?
M(1) = 1, M(2) = 3, M(n) =?

Using the recursive solution:

M(n) = M(n − 1) + 1 + M(n − 1) = 2.M(n − 1) + 1

Formula for M(n)?

M(n) = 2n+1 − 1

Proof?

40

Example: Towers of Hanoi

How many moves to move n disks, M(n)?
M(1) = 1, M(2) = 3, M(n) =?

Using the recursive solution:

M(n) = M(n − 1) + 1 + M(n − 1) = 2.M(n − 1) + 1

Formula for M(n)?

M(n) = 2n+1 − 1

Proof?

41

Inductive Proofs About Recursive Definitions

Proofs about recursively defined function very often proceed by a
mathematical induction following the structure of the definition.

Example

∀n ∈ N
(
n! ≥ 2n−1

)
Proof.

[B] 0! = 1 ≥ 1
2 = 20−1

[I] Assume n ≥ 1.
(n + 1)! = n! · (n + 1) ≥ 2n−1 · (n + 1) by Ind. Hyp.

≥ 2n−1 · 2 by n ≥ 1
= 2n

42

Exercise

4.4.2 Define s1 = 1 and sn+1 = 1
1+sn

for n ≥ 1

Then s1 = 1, s2 = 1
2 , s3 = 2

3 , s4 = 3
5 , s5 = 5

8 , . . .
The numbers in numerator and denominator remind one of the
Fibonacci sequence.
Prove by induction that

sn =
fib(n)

fib(n + 1)

43

Example (continued)

Furthermore,

lim
n→∞

sn =
2√

5 + 1
=

√
5− 1

2
≈ 0.6

This is obtained by showing (using induction!) that

fib(n) =
1√
5

(rn1 − rn2)

where r1 = 1+
√
5

2 and r2 = 1−
√
5

2

44

Exercise

4.4.4 (a) Give a recursive definition for the sequence

(2, 4, 16, 256, . . .)

To generate an = 22
n

use an = (an−1)2.
(The related “Fermat numbers” Fn = 22n + 1 are used in cryptography.)

(b) Give a recursive definition for the sequence

(2, 4, 16, 65536, . . .)

To generate a “stack” of n 2’s use bn = 2bn−1 .
(These are Ackermann’s numbers, first used in logic. The inverse
function is extremely slow growing; it is important for the analysis
of several data organisation algorithms.)

45

Exercise

4.4.4 (a) Give a recursive definition for the sequence

(2, 4, 16, 256, . . .)

To generate an = 22
n

use an = (an−1)2.
(The related “Fermat numbers” Fn = 22n + 1 are used in cryptography.)

(b) Give a recursive definition for the sequence

(2, 4, 16, 65536, . . .)

To generate a “stack” of n 2’s use bn = 2bn−1 .
(These are Ackermann’s numbers, first used in logic. The inverse
function is extremely slow growing; it is important for the analysis
of several data organisation algorithms.)

46

Correctness of Recursive Definition

A recurrence formula is correct if the computation of any later
term can be reduced to the initial values given in (B).

Example (Incorrect definition)

Function g(n) is defined recursively by

g(n) = g(g(n − 1)− 1) + 1, g(0) = 2.

The definition of g(n) is incomplete — the recursion may not
terminate:
Attempt to compute g(1) gives

g(1) = g(g(0)−1) + 1 = g(1) + 1 = . . . = g(1) + 1 + 1 + 1 . . .

When implemented, it leads to an overflow; most static
analyses cannot detect this kind of ill-defined recursion.

47

Example (continued)

However, the definition could be repaired. For example, we can
add the specification specify g(1) = 2.

Then g(2) = g(2− 1) + 1 = 3,
g(3) = g(g(2)− 1) + 1 = g(3− 1) + 1 = 4,
. . .

In fact, by induction . . . g(n) = n + 1

48

This illustrates a very important principle: the boundary (limiting)
cases of the definition are evaluated before applying the recursive
construction.

Example

Function f (n) is defined by

f (n) = f (dn/2e), f (0) = 1

When evaluated for n = 1 it leads to

f (1) = f (1) = f (1) = . . .

This one can also be repaired. For example, one could specify that
f (1) = 1.
This would lead to a constant function f (n) = 1 for all n ≥ 0.

49

Structural Induction

The induction schemes can be applied not only to natural numbers
(and integers) but to any partially ordered set in general.

The basic approach is always the same — we need to verify that

[I] for any given object, if the property in question holds for
all its predecessors (‘smaller’ objects) then it holds for the
object itself

[B] the property holds for all minimal objects — objects that
have no predecessors; they are usually very simple objects
allowing immediate verification

50

Example: Induction on Rooted Trees

We write T = 〈r ; T1,T2, . . . ,Tk〉 for a tree T with root r and k
subtrees at the root T1, . . . ,Tk

If
[B] p(〈v ; 〉) for trees with only a root
[I] p(T1) ∧ . . . ∧ p(Tk)→ p(T) for all trees

T = 〈r ; T1,T2, . . . ,Tk〉
then
[C] p(T) for every tree T

51

Example

Theorem

In any rooted tree the number of vertices is one more than the
number of edges.

Proof.

[B] If T = 〈v ; 〉 then v(T) = 1 and e(T) = 0

52

Example

Theorem

In any rooted tree the number of vertices is one more than the
number of edges.

Proof.

[B] If T = 〈v ; 〉 then v(T) = 1 and e(T) = 0

[I] If T = 〈r ; T1,T2, . . . ,Tk〉 then

v(T) = 1 +
∑k

i=1 v(Ti) and e(T) = k +
∑k

i=1 e(Ti)

53

Example

Theorem

In any rooted tree the number of vertices is one more than the
number of edges.

Proof.

[B] If T = 〈v ; 〉 then v(T) = 1 and e(T) = 0

[I] If T = 〈r ; T1,T2, . . . ,Tk〉 then

v(T) = 1 +
∑k

i=1 v(Ti) and e(T) = k +
∑k

i=1 e(Ti)
From the Ind. Hyp. on T1, . . . ,Tk it follows that∑k

i=1 v(Ti) =
∑k

i=1(e(Ti) + 1) = (
∑k

i=1 e(Ti)) + k
Therefore

v(T) = 1 + (
∑k

i=1 e(Ti)) + k = 1 + e(T)

54

Example

Theorem

In any rooted tree the number of leaves is one more than the
number of vertices that have a right sibling.

Proof: exercise

4 leaves 3 vertices with right sibling

55

Example: Induction on Σ∗

Formal definition of Σ∗:

λ ∈ Σ∗

If w ∈ Σ∗ then a · w ∈ Σ∗ for all a ∈ Σ

Define reverse : Σ∗ → Σ∗:

reverse(λ) = λ,

reverse(a · w) = reverse(w) · a

56

Example: Induction on Σ∗

Formal definition of Σ∗:

λ ∈ Σ∗

If w ∈ Σ∗ then a · w ∈ Σ∗ for all a ∈ Σ

Define reverse : Σ∗ → Σ∗:

reverse(λ) = λ,

reverse(a · w) = reverse(w) · a

57

Example: Induction on Σ∗

Theorem

For all w , v ∈ Σ∗, reverse(wv) = reverse(v) · reverse(w).

Proof: By induction on w ...
[B] reverse(λ · v) = reverse(v) [Def]

=reverse(v) · λ [Def)]
=reverse(λ) · reverse(w) [Def]

[I] reverse((aw ′) · v) = reverse(a · (w ′v)) [Def]
= reverse(w ′v) · a [Def]
= reverse(v)reverse(w ′) · a [IH]
= reverse(v)reverse(aw ′) [Def]

58

Example: Induction on Σ∗

Theorem

For all w , v ∈ Σ∗, reverse(wv) = reverse(v) · reverse(w).

Proof: By induction on w ...
[B] reverse(λ · v) = reverse(v) [Def]

=reverse(v) · λ [Def)]
=reverse(λ) · reverse(w) [Def]

[I] reverse((aw ′) · v) = reverse(a · (w ′v)) [Def]
= reverse(w ′v) · a [Def]
= reverse(v)reverse(w ′) · a [IH]
= reverse(v)reverse(aw ′) [Def]

59

Example: Induction on Σ∗

Theorem

For all w , v ∈ Σ∗, reverse(wv) = reverse(v) · reverse(w).

Proof: By induction on w ...
[B] reverse(λ · v) = reverse(v) [Def]

=reverse(v) · λ [Def)]
=reverse(λ) · reverse(w) [Def]

[I] reverse((aw ′) · v) = reverse(a · (w ′v)) [Def]
= reverse(w ′v) · a [Def]
= reverse(v)reverse(w ′) · a [IH]
= reverse(v)reverse(aw ′) [Def]

60

Mutual Recursion

Several more sophisticated programs employ a technique of two
procedures calling each other. Of course, it should be designed so
that each consecutive call refers to ever smaller parameters, so
that the entire process terminates. This method is often used in
computer graphics, in particular for generating fractal images
(basis of various imaginary landscapes, among others).

61

Mutual Recursion
Example

Alternative definition of Fibonacci numbers:

(B) f (1) = 1
(B) g(1) = 1
(R) f (n) = f (n − 1) + g(n − 1)
(R) g(n) = f (n − 1)

In matrix form:(
f (n)
g(n)

)
=

(
1 1
1 0

)(
f (n − 1)
g(n − 1)

)

Corollary: (
f (n)
g(n)

)
=

(
1 1
1 0

)n (
f (0)
g(0)

)
62

Mutual Recursion
Example

Alternative definition of Fibonacci numbers:

(B) f (1) = 1
(B) g(1) = 1
(R) f (n) = f (n − 1) + g(n − 1)
(R) g(n) = f (n − 1)

In matrix form:(
f (n)
g(n)

)
=

(
1 1
1 0

)(
f (n − 1)
g(n − 1)

)

Corollary: (
f (n)
g(n)

)
=

(
1 1
1 0

)n (
f (0)
g(0)

)
63

Summary

Mathematical induction:
base case(s), inductive hypothesis P(k),
inductive step ∀k (P(k)→ P(k + 1)), conclusion

Variations:
strong ind., forward-backward ind., ind. by cases,
structural ind.

Recursive definitions

64

