Propositional logic

1. Logic is about reasoning. As rational beings (hopefully!) we are often using
some process of reasoning to make decisions or draw conclusions. Logic
attempts to formalise some of these processes. Supposing your friend Kim
tells you that she can come to a music concert only if her mother arrives at
their home on time. You find her at the show. You will probably conclude
that her mother must have arrived on time. Observe that Kim’s statement
actually has two sentences, roughly: 1. Mother arrives on time. 2. Kim
goes to the show. Her statement connects these two statement by use of
“only if”. Propositional logic studies statements made up of basic or atomic
sentences by using logical connectives. Some of the most common connectives
are OR, AND, IF, ONLY IF etc. There is also the single-sentence operator
NOT. Formal logic is indifferent to whether the atomic sentences are true or
false. Its main concern is determining the truth (or falsity) of compounded
statements from the truth and falsity of the individual constituents. Let the
symbol p stand for the sentence ‘the sun rises in the west’. This is obviously
false from our experience in our planet. But it is true on Venus! In logic
we are not concerned about the truth of such atomic sentences. What we
consider true is something like ‘the sun rises in the west or it does not rise
in the west’. We write this as p V —p. This is declared to be always true. It
is a tautology.

2. Start with a set of letters p,q,r,... sometimes with subscripts which will
be called propositional variables. They stand for atomic sentences. You can
think of these as statements which can be assigned a truth value true (T)
or false (F). For example, a statement like ‘Alice is student of the course
COMP9020’ is either true or false. We just have to check the truth of a sin-
gle statement. But suppose I say ‘Alice and Bob are students of the course
COMP9020’ then to check its truth you have to verify two statements: ‘Al-
ice is student of the course COMP9020’ and ‘Bob is student of the course
COMP9020° . My statement would be true if both these atomic sentences
are true. So my statement is a compound statement consisting of two atomic
sentences joined by an ‘and’. AND (A) is an example of a logical connective.
Some other commonly used connectives are V (OR), = (implies) and < (im-
plies and is implied by). These are all binary operators. They connect two
propositional formulas. There is an important unary operator — (NOT). It
acts on a single formula.

3. We can now recursively define a formula of propositional logic.



(a) Every propositional variable p is a formula. These are called atomic

formulas.

(b) If @ is formula then —® is formula. Atomic formulas p,q,..., and their
negations —p, —q, .. ., are called literals.

(c) If ®; and P, are formulas then so are &1 A Dy, &1 V Py, &1=P5 and
b1 Ps.

(d) Finally, we need parentheses to remove ambiguities. So we posit if ® is
formula then (@) is also a formula.

4. Study this recursive definition carefully. You will come across this type of
definition frequently in computer science. The definition gives a recipe for
building legitimate formulas. For example, we will reject Vp as a formula
because it dos not confirm to the recipe.

Remember what the definition is doing. Let us start with a finite set ¥ =
{p1,p2,--.spn} U{~,V,(,)}. X is our alphabet. The set of legal formulas
F is a subset of ¥*. The recursive definition of a formula also defines this
subset. You can use the definition to write an algorithm to check whether a
given word in ¥* is formula or not.

You cam also use the recursive nature of the definition to prove theorems
about formulas. Suppose you want to prove that some assertion is true for
all formulas. You prove it first for atomic formulas. Then you prove that if
the assertion is true for @1, ®5 it is true for P, and ®; V 5 and you are
done! This proof trick is called structural induction. You are using induction
on the structure of the formulas.

Take a few moments to think about this. It is important!

5. You can build formulas using only two operators. Any of the pairs (—, V), (=, A)
r (—-,=) will do.

6. We actually define =¥ to be = vV .

7. Atomic formulas which are same as propositional variables can be true or
false. Logic is not too concerned about the truth or falsity of the atomic
formulas. What is important is the truth of a compound formula. This is
defined recursively (again!) as follows. First given the set of formulas a truth
assignment is a map v : F — {T,F}. Thus v(®) = T means that the formula
is evaluated to be true.

a) —® is true if ® is false and false if ® is true.

P e

®, V @, is true only in case both ®; and &, are true.

)
b) ®; V @, is true if at least one of them is true.
¢)

)

d

—

Since =V is by definition same as —® V ¥ it is true if ® is false (so
- is true) or ¥ is true.

The interpretation of =¥ may seem strange in the beginning, espe-
cially the fact that it is true if ® is false. It might seem counter-intuitive



10.

11.

to our ordinary reasoning. Let us look at an example: if it rains I will
stay at home’. Let p stand for “it rains’ and ¢ for ‘I will stay at home”.
We can represent the full statement as p=>¢q. When will you consider it
to be false? If it rains and I do not stay at home. That is, p is true and
q is false. This is the only case in which it is false. It is true otherwise.

So we can determine the truth value of a formula from the truth values of its
components. Using the recursive definition we can see that the evaluation of
a formula (determining whether true or false) depends only the truth value
assigned to the variables (the atomic formulas). A nice way of presenting the
evaluation of formulas is by using of the truth table. Let us draw few basic
truth tables.

plag|®=pVyg plgqg|P=pAg plaq|®=p=q
pl®=-p F|F F F|F F F|F T
F T F|T T F|T F F|T T
T F T|F T T|F F T|F F
T[T T T[T T T[T T

The tables are almost self-explanatory. At the top row you write the variables
and the final column in that row is the formula ® we are trying to evaluate.
Below the variables the different truth assignments of the variables and the
final column corresponds to the valuation of the formula ®. If you have
n variables how many possible assignments are there? Ans. 2™. So for n
variables there are 2" rows in the truth table.

A formula @ is called a tautology if it is always true. Thus in the truth table
for ® you will only see T in the last column. Conversely, a formula is called
unsatisfiable if it is always false. If ® is a tautology then —® is unsatisfiable.
A very important problem in computer science is checking the satisfiability
of propositional logic formula. It is called SAT.

Two formulas ®, ¥ are called equivalent if they evaluate to same truth values.
We write ® = U. & = U if and only if &<V is a tautology. That is, one is
true or false if the other is same. So it is enough to draw the truth table of
one formula only. We generally identify the two formulas on either side of =.
A simple example is =—=® and ®. Some more examples follow.

Examples of some equivalent formulas.
(a) DAV =—(—-D VD).

(b)

(c) Let us try to prove the last equivalence as an exercise in induction. We
will use induction on 7, the number of implicants (®’s). Clearly, if n = 1
both sides are ;=¥ and there is nothing to prove. Let us see how we
can prove it for n = 2. We have to show ®1=(P2=0) = (91 A $o)=U.
Now draw up the truth table. You may ask the ®’s and ¥ are formulas in



general and so will have any number of propositional variables. So how
do we evaluate them if we don’t know about these variables? Actually,
we don’t need to know about the constituents to determine equivalence.
Each ®; and ¥ is either true or false. So if we cover all cases and
show that in each case both sides of = have the same truth value then
we are done. We are basically treating the formulas (®;’s and V) as
propositional variables. Whatever their actual truth value it is covered.
So the table is

P, Dy | U (I)1Z>(<D2:>\I/) ((I)l /\(I)Q):>\I/
F F F T T
F F T T T
F T F T T
F T T T T
T F F T T
T F T T T
T T F F F
T T T T T

There are 3 propositional ‘variables’ ®;, ®5 and ¥ and so 8 rows in the
table. The table itself is not difficult to fill. Just remember that the
formula X=Y is false only when X is true and Y is false. Now convince
yourself about the correctness of the entries in the table. We see that
®1=(P=Y) and (P A P2)=T have the same truth value as the last
two columns are identical. So theya re equivalent.

We will use induction for the general case. So assume the statement
is true for n — 1. We will show that it is true for n completing the
induction. Write the formula ®,,=% as ¥’. Then the left side of the
formula (1) can be written as ®;=>(®5...(®,_1=¥’)...). Note that
there are only n — 1 implicants (®4,...,P,_1). So by the induction
hypotheses

@1:>((I)2 - ((I)n:>\lf> .. ) = (I)1=>((I)2 - ((I)n,1:>\11/) .. )
= ((I)l APy AL A (I)nfl):>\11l

Now write the last line (&1 APy A ... A P,_1)=0 ==V where I
stands for the formula &1 APy A ... A D,,_1. We can now write the last
line as I'=(®,,=T) recalling the definition of ¥’. But this is a formula
with two implicants I and ®,,. We have covered this case above. Hence
I'=(®,=7) = (I'A®,)=V. Substituting the expression for I we prove
the theorem.

Manas Patra



