COMP1511 - Programming
Fundamentals

— Term 2, 2019 - Lecture 10 S




What did we learn yesterday?

Assignment 1 - CS Paint

e Assessment and some details
Functions and Libraries

e Including other C Libraries
Professionalism

e What's more important than just coding?



What are we covering today?

Characters and Strings

e A new variable type!
e Using letters and words in C

Halfway point of COMP1511

e Let's make a program that uses everything we've learnt so far



Characters

We've only used ints and doubles so far

We have a new type called char

Characters are what we think of as letters, like ‘a’, ‘'b’, ‘c’ etc

They can also represent numbers, like ‘0", “1','2" etc

They are actually 8 bit integers!

We use them as characters, but they're actually encoded numbers
ASCIl (American Standard Code for Information Interchange)

We will not be using char for individual characters, but we will in arrays



ASCIl and Characters as numbers

We make use of ASCII, but we don’t need to know it

e ASCII specifically uses values 0-127 and encodes:
o Upper and Lower case English letters
o Digits 0-9
o Punctuation symbols
o Space and Newline
o And more...
e |t's not necessary to memorise ASCII, rather it's important to remember
that characters can be treated like numbers sometimes



Characters in code

#include <stdio.h>

int main (void) {

// we're using an int to represent a single character
int character;

// we can assign a character value using single quotes
character = 'a';

// This int representing a character can be used as either
// a character or a number

printf ("The letter %c has the ASCII value %d.\n", character,
character) ;

return 0O;

}

Note the use of %c in the printf will format the variable as a character



Helpful Functions

getchar () is a function that will read a character from input

Reads a byte from standard input

Usually returns an int between 0 and 255 (ASCII code of the byte it read)
Will sometimes return a -1 for EOF (which is why we use an int, not a char)
Sometimes getchar won't get its input until a newline is entered

putchar () is a function that will write a character to output

e Will act very similarly to printf ("%c", character);



Use of getchar() and putchar()

// using getchar () to read a single character from input

int inputChar;
printf ("Please enter a character: ");

inputChar = getchar();
printf ("The input %c has the ASCII value %d.\n", inputChar, inputChar);

// using putchar() to write a single character to output
putchar (inputChar) ;




Invisible Characters

There are other ASCII codes for “characters” that can’'t be seen

e Newline(\n)is a character

e Space is a character

e There's also a special character called EOF (End of File) that signifies that
there’s no more input

e EOF has been #defined in stdio.h, so we use it like a constant

e We can signify the end of input in a Linux terminal by using Ctrl-D



Working with multiple characters

We can read in multiple characters (including space and newline)

This code is worth trying out . . . you get to see that space and newline have
ASCII codes!

// reading multiple characters in a loop
int readChar;
readChar = getchar();

while (readChar '= EOF) {
printf ("I read character: %c, with ASCII code: %d.\n",

readChar, readChar);
readChar = getchar();




More Character Functions

<ctype.h> is a useful library that works with characters

int isalpha (int c) will say if the character is a letter

int isdigit(int c¢) will sayifitis a numeral

int islower (int c¢) will say if a character is a lower case letter
int toUpper (int c) will convert a character to upper case

e There are more! Look up ctype.h references or man pages for more
information



Strings
When we have multiple characters together, we call it a string

e Strings in C are arrays of char variables containing ASCIl code
e Strings are basically words, while chars are letters

e Strings have a helping element at the end, a "\0'
e |t's often called the null terminator and it is an invisible character
e This helps us know if we're at the end of the string



Strings in Code

Strings are arrays of type char, but they have a convenient shorthand

// a string is an array of characters

char wordl[] = {'h','e','1",'1",'0"};

// but we also have a convenient shorthand
// that feels more like words

char word2[] = "hello";

Both of these strings will be created with 6 elements. The lettersh,e,1,1,0
and the null terminator \ 0

h | e I I o | \0




Reading and writing strings
fgets(array[], length, stream) is a useful function for reading strings

It will take up to length number of characters

They will be written into the array

The characters will be taken from a stream

Our most commonly used stream is called stdin, “standard input”

stdin is our user typing input into the terminal
We also have stdout which is our stream to write to the terminal



Reading and writing strings in code

// reading and writing lines of text

char line[MAX LINE LENGTH];
while (fgets(line, MAX LINE LENGTH, stdin) !'= NULL) ({

fputs (line, stdout);
}

fputs (array, stream) works very similarly to printf

[
It will output the string stored in the array to the standard output



Helpful Functions in the String Library

<string.h> has access to some very useful functions

Note that char* s is equivalent to char s[]

int strlen(char* s) -return the length of the string (not including \0)
strcpy and strncopy - copy the contents of one string into another
strcat and strncat - attach one string to the end of another

stremp and variations - compare two strings

strchr and strrchr - find the first or last occurrence of a character

And more...



Break Time

Learning something new is better than
being good at something!

Remember ... as nice as high marks are,
they're not the same as long term fulfilment

"I don't care who you are, where you're from,
what you've done . .. as long as you love C." -
The Backstreet Boys




Whooaaah We're Halfway There...

We're going to use a bit of everything we've seen so far in COMP1511

This program is a word game

e Itwill read in a string from the user
e |t will then read in another string from the user and tell us how many of

the letters from the second appear in the first
e This will use if, while, arrays (of characters) and functions



Where will we start?

A simple version to begin with

e Let'sreadin aline of characters
e Thenread in asingle character and see whether it's in the line or not



Read in a line of characters (a string)

We can use a nice library function here

e fgets () will grab an entire line from standard input
e We can set up a maximum line size as well

#define MAX LINE_ LENGTH 100

int main(void) {
char line[MAX LINE LENGTH];
fgets(line, MAX LINE LENGTH, stdin);




Read in a single character

Starting simple, we can take a character as input

e getchar () will read a single character from standard input
e Remember that we'll be using ints as our types for characters
e Here we can loop and continually get characters until input ends

int inputChar;

inputChar = getchar();

while (inputChar !'= EOF) {
inputChar = getchar()

}




A Function to find a character in a string

Loop through the string, testing for a character

We've done this kind of loop before with other types!

int testChar(char ¢, char line[MAX LINE LENGTH]) ({
int charCount = 0;
int 1 = 0;
while (i < MAX LINE LENGTH && line[i] !'= '\0') {
if (line[i] == c) {
charCount++;
}
i++;
}

return charCount;




Simple functionality... how well is it working?

What tests should we run at this point?

e Look for syntax errors using our compiler (dcc)
e Look for logical errors by testing with different inputs

We might need to add in some extra outputs

e |f we're getting strange behaviour, we can confirm our guesses
e We might learn more about what's going on in our program



What are these extra characters?

Maybe we need to check what those characters are

e Some print statements can help here

int inputChar;
inputChar = getchar() ;

while (inputChar !'= EOF) {
printf ("Main loop running, readChar is %c.\n", inputChar);

printf ("%d\n", testChar (inputChar, line));
inputChar = getchar() ;




Dealing with little issues

We're reading newlines (\n) as characters!

Let's remove the newlines from both our line and our inputs

We'll use a library function, strlen () to find the end of a string

To use strlen (), we will need the string.h library, which we will include
We'll then replace the \n with \ 0 which will end the string early



Removing newlines

Removing a \n at the end of a string:

int main(void) {
char line[MAX LINE LENGTH];
fgets(line, MAX LINE LENGTH, stdin);
int length = strlen(input);
input[length - 1] = '\0';

Ignoring the \n while reading input:

inputChar = getchar() ;

if (inputChar == '\n') {
inputChar = getchar() ;

}




Expanding on the functionality

Our first attempt just checked for single letters

Now we expand to words!

Read in another word

Check every letter in the word for whether it appears in the phrase
Then report back how many letters matched

Some good reasons to use functions!

e Readingin words is now duplicated
e We can reuse our testChar() function to see if letters match



A function to read a line

This function also removes the \n that fgets will give us

void readString(char input[MAX LINE LENGTH]) {
fgets (input, MAX LINE LENGTH, stdin);
int length = strlen(input) ;
input[length - 1] = '"\0';




A function to count letters

Counts how many letters from one string appear in the other

This function also uses another function!

int numLetterMatches (char word[MAX LINE LENGTH], char line[MAX LINE LENGTH]) {

int 1 = 0;
int matchCount = 0;
while (i < MAX LINE LENGTH && word[i] !'= '\0') {
if (testChar (word[i], line)) {
matchCount++;
}
i++;

}

return matchCount;




A simple word game

What coding concepts have we used there that might come in handy?

e Characters and Strings (note that we'll never need the ASCII table to work
with characters)

Using libraries and provided functions

Loops on strings (using the Null Terminator \0)

Writing multiple functions and using functions within functions

A lot of our basic C concepts like if, while and array indexing



What did we learn today?

Characters and Strings

e Using letters and words in C
e Using functions from libraries

Coding using everything we've learnt so far

e Asingle program that tries to use most concepts we've covered in the first
half of this course



