## COMP9334

Capacity Planning for Computer Systems and Networks

Week 5: Non-markovian queueing models and queueing disciplines

## Week 3: Queues with Poisson arrivals (1)

- Single-server M/M/1

- By using a Markov chain, we can show that the mean response time is:

$$
=\frac{1}{\mu-\lambda}
$$

## Week 3: Queues with Poisson arrivals

- Multi-server $\mathrm{M} / \mathrm{M} / \mathrm{m}$

Exponential inter-arrivals $(\lambda)$
Exponential service time ( $\mu$ )

- By using Markov chain, we know the mean response time is



## Week 4: Closed-queueing networks

- Analyse closed-queueing network with Markov chain
- The transition between states is caused by an arrival or a departure according to exponential distribution

CPU


Disk

- General procedure
- Identify the states
- Find the state transition rates
- Set up the balance equations
- Solve for the steady state probabilities
- Find the response time etc.


## This lecture: Road Map

- Single-server queues
- What if the arrival rate and/or the service rate is not exponentially distributed
- Multi-server queues
- What if the arrival rate and/or the service rate is not exponentially distributed
- Queueing networks
- Queuing disciplines


## General single-server queues



- Need to specify the
- Inter-arrival time probability distribution
- Service time probability distribution
- Independence assumptions
- All inter-arrival times are independent
- All service times are independent
- The amount of service of customer A needs is independent of the amount of time customer B needs
- The inter-arrival time and service time are independent of each other
- Under the independence assumption, we can analyse a number of types of single server queues
- Without the independence assumption, queueing problems are very difficult to solve!


## Classification of single-server queues



- Recall Kendall's notation: "M/M/1" means
- " M " in the 1st place means inter-arrival time is exponentially distributed
- " M " in the 2nd place means service time probability is exponentially distributed
- "1" in 3rd position means 1 server
- We use a "G" to denote a general probability distribution
- Meaning any probability distribution
- Classification of single-server queues:

|  |  | Service time Distribution: |  |
| :--- | :--- | :--- | :--- |
|  |  | Exponential | General |
| Inter-arrival time <br> distribution: | Exponential | $\mathrm{M} / \mathrm{M} / 1$ | $\mathrm{M} / \mathrm{G} / 1$ |
|  | General | $\mathrm{G} / \mathrm{M} / 1$ | $\mathrm{G} / \mathrm{G} / 1$ |

## Example M/G/1 queue problem

- Consider an e-mailer server
- E-mails arrive at the mail server with a Poisson distribution with mean arrival rate of 1.2 messages/s
- The service time distribution of the emails are:
- $30 \%$ of messages processed in $0.1 \mathrm{~s}, 50 \%$ in $0.3 \mathrm{~s}, 20 \%$ in 2 s
- What is
- Average waiting time for a message?
- Average response time for a message?
- Average number of messages in the mail system?
- This is an $M / G / 1$ queue problem
- Arrival is Poisson
- Service time is not exponential
- In order to solve an M/G/1 queue, we need to understand what the moment of a probability distribution is.


## Revision: moment of a probability distribution (1)

- Consider a discrete probability distribution
- There are $n$ possible outcomes: $x_{1}, x_{2}, \ldots, x_{n}$
- The probability that $x_{i}$ occurs is $p_{i}$
- Example: For a fair dice
- The possible outcomes are $1,2, \ldots, 6$
- The probability that each outcome occurs is $1 / 6$
- The first moment (also known as the mean or expected value) is

$$
E[X]=\sum_{i=1}^{n} x_{i} p_{i}
$$

- For a fair dice, the first moment is
$=1$ * $1 / 6+2$ * $1 / 6+\ldots+6$ * $1 / 6=3.5$


## Revision: moment of a probability distribution (2)

- The second moment of a discrete probability distribution is

$$
E\left[X^{2}\right]=\sum_{i=1}^{n} x_{i}^{2} p_{i}
$$

- For a fair dice, the second moment is
$=1^{2}$ * $1 / 6+2^{2}$ * $1 / 6+\ldots+6^{2}$ * $1 / 6$
- You can prove that
- Second moment of $X=(E[X])^{2}+$ Variance of $X$
- Note: The above definitions are for discrete probability distribution. We will look at continuous probability distribution a moment later


## Solution to M/G/1 queue

- M/G/1 analysis is still tractable
- M/G/1 is no longer a Markov chain
- For a M/G/1 queue with the characteristics
- Arrival is Poisson with rate $\lambda$
- Service time S has
- Mean $=1 / \mu=E[S]=$ First moment
- Second moment $=E\left[S^{2}\right]$
- The mean waiting time $W$ of a $M / G / 1$ queue is given by the Pollaczek-Khinchin (P-K) formula:

$$
W=\frac{\lambda E\left[S^{2}\right]}{2(1-\rho)} \quad \text { where } \quad \rho=\frac{\lambda}{\mu}
$$

## Back to our example queueing problem (1)

- Consider an e-mailer server
- E-mails arrive at the mail server with a Poisson distribution with mean arrival rate of 1.2 messages/s
- The service time distribution of the emails are:
- $30 \%$ of messages processed in $0.1 \mathrm{~s}, 50 \%$ in $0.3 \mathrm{~s}, 20 \%$ in 2 s
- Exercise: In order to find the mean waiting time using the P-K formula, we need to know
- Mean arrival rate,
- Mean service time, and,
- Second moment of service time.
- Can you find them?


## Back to our example queueing problem (2)

- Consider an e-mailer server
- E-mails arrive at the mail server with a Poisson distribution with mean arrival rate of 1.2 messages/s
- The service time distribution of the emails are:
- $30 \%$ of messages processed in $0.1 \mathrm{~s}, 50 \%$ in $0.3 \mathrm{~s}, 20 \%$ in 2 s
- Solution
- Mean arrival rate $=\square$
- Mean service time

- Second moment of the service time

- You now have everything you need to compute the mean waiting time using the P-K formula


## Back to our example queueing problem (3)

- Since
- Mean arrival rate $\lambda=1.2$ messages/s
- Mean service time (E[S] or $1 / \mu$ ) $=0.58 \mathrm{~s}$
- Second moment of mean service time $E\left[S^{2}\right]=0.848 \mathrm{~s}^{2}$
- Utilisation $\rho=\lambda / \mu=\lambda E[S]=1.2$ * $0.58=0.696$
- Substituting these values in the P-K formula

$$
W=\frac{\lambda E\left[S^{2}\right]}{2(1-\rho)} \quad \mathrm{W}=1.673 \mathrm{~s}
$$

-How about:
-Average response time for a message
-Average number of messages in the mail system

## Back to our example queueing problem (4)

Since the mean waiting time $\mathrm{W}=1.673 \mathrm{~s}$.
The mean response time T is

$$
T=\square
$$

Average \# messages in the system
$\square$
Exercise: Can you use mean waiting time and Little's Law to determine the mean number of messages in the queue?

## Understanding the P-K formula

- Since the Second moment of $S=E[S]^{2}+$ Variance of $S$
- We can write the P-K formula as
- Meaning waiting time =

$$
W=\frac{\lambda\left(E[S]^{2}+\sigma_{S}^{2}\right)}{2(1-\rho)}
$$

- Smaller variance in service time $\rightarrow$ smaller waiting time
- M/D/1 is a special case of $M / G / 1$
- "D" stands for deterministic: Constant service time E[S] and Variance of $S=0$
- For the same value of $\rho$ and $E[S]$, deterministic has the smallest mean response time


## Moments for continuous probability density

- Exponential function is a continuous probability density
- If a random variable $X$ has continuous probability density function $f(x)$, then its
- first moment (= mean, expected value) $E[X]$ and
- second moment $E\left[X^{2}\right]$
are given by
- If the service time $S$ is
$E[X]=\int x f(x) d x$ exponential with rate $\mu$, then
- $E[S]=1 / \mu$
- $E\left[S^{2}\right]=2 / \mu^{2}$
$E\left[X^{2}\right]=\int x^{2} f(x) d x$


## M/M/1 as a special case of M/G/1

- Let us apply the result of the M/G/1 queue to exponential service time
- Let us put $E[S]=1 / \mu$ and $E\left[S^{2}\right]=2 / \mu^{2}$ in the $P-K$ formula:

$$
W=\frac{\lambda E\left[S^{2}\right]}{2(1-\rho)}
$$

- We get

$$
W=\frac{\rho}{\mu(1-\rho)}
$$

- Which is the same as the $M / M / 1$ queue waiting time formula that we derive in Week 3

Remark on M/G/1

$$
W=\frac{\lambda E\left[S^{2}\right]}{2(1-\rho)}
$$

- $\rho \rightarrow 1, W \rightarrow \infty$


## Deriving the P-K formula (1)



## Deriving the P-K formula (2)

- Let
- W = Mean waiting time
- $\mathrm{N}=$ Mean number of customers in the queue
- $1 / \mu=$ Mean service time
- $\mathrm{R}=$ Mean residual service time
- We can prove that
- $W=N$ * $(1 / \mu)+R$


## Arrival rate $\lambda$



- Applying Little's Law to the queue
- $\mathrm{N}=\lambda \mathrm{W}$

Substitution

$$
W=\lambda \times W \times \frac{1}{\mu}+R \Rightarrow W=\frac{R}{1-\rho}
$$

$$
\text { where } \rho=\frac{\lambda}{\mu_{-}}
$$

## Deriving P-K formula (3)

- We have just showed that the mean waiting time in a $M / G / 1$ queue is

$$
W=\frac{R}{1-\rho}
$$

- We can prove the P-K formula if we can show that the mean residual time $R$ is

$$
R=\frac{1}{2} \lambda E\left[S^{2}\right]
$$

How residual service time changes over time?

| Job index | Arrival time | Processing time required |
| :--- | :--- | :--- |
| 1 | 2 | 2 |
| 2 | 6 | 4 |
| 3 | 8 | 4 |

Time when
each job is
being served:

Residual service time seen by a customer arriving at time $t$


## What is the mean residual time ...

Residual service time seen by a customer arriving at time $t$


Mean residual time seen by an arriving customer over time [0,14]

$$
\begin{aligned}
& =\frac{\text { Area under the curve ov }}{14} \\
& =\frac{\frac{1}{2} \times 2^{2}+\frac{1}{2} \times 4^{2}+\frac{1}{2} \times 4^{2}}{14}
\end{aligned}
$$

## In general

Residual service time seen by a customer arriving at time $t$


Assuming M jobs are completed in time T
Mean residual time
$=\frac{\sum_{i=1}^{M} \frac{1}{2} S_{i}^{2}}{T}=\frac{1}{2} \underset{\text { сомрез4 }}{\frac{\sum_{i=1}^{M} S_{i}^{2}}{M} \frac{M}{T}=\frac{1}{2} E\left[S^{2}\right] \lambda}$

## The P-K formula

- Thus, the mean residual time R is

$$
R=\frac{1}{2} \lambda E\left[S^{2}\right]
$$

- By substituting this into $W=\frac{R}{1-\rho}$
- We get the P-K formula
- This derivation also shows that the waiting time is proportional to the residual service time
- The residual service time is proportional to the 2 nd moment of service time


## G/G/1 queue

- G/G/1 queue are harder to analyse
- Generally, we cannot find an explicit formula for the the waiting time or response time for a G/G/1 queue
- Results on G/G/1 queue include
- Approximation results
- Bounds on waiting time


## Approximate G/G/1 waiting time

- There are many different methods to find the approximate waiting time for a G/G/1 queue
- Most of the approximation works well when the traffic is heavy, i.e. when the utilisation $\rho$ is high
- Let
- Mean arrival rate $=\lambda$
- Variance of inter-arrival time $=\sigma_{a}^{2}$
- Service time $S$ has mean $1 / \mu=E[S]$
- Variance of service time $=\sigma_{s}{ }^{2}$
- The approximate waiting time for a $\mathrm{G} / \mathrm{G} / 1$ queue is

$$
W \approx \frac{\lambda^{2}\left(\sigma_{a}^{2}+\sigma_{s}^{2}\right)}{1+\lambda^{2} \sigma_{s}^{2}} \frac{\lambda\left(E[S]^{2}+\sigma_{s}^{2}\right)}{2(1-\rho)} \text { where } \rho=\frac{\lambda}{\mu}
$$

- Note: $\rho \rightarrow 1, \mathrm{~W} \rightarrow \infty$
- Large variance means large waiting time


## Bounds for G/G/1 waiting time

- Let
- Mean arrival rate $=\lambda$
- Variance of inter-arrival time $=\sigma_{a}{ }^{2}$
- Service time $S$ has mean $1 / \mu=E[S]$
- Variance of service time $=\sigma_{s}{ }^{2}$
- A bound for the waiting time for a $\mathrm{G} / \mathrm{G} / 1$ queue is

$$
W \leq \frac{\lambda\left(\sigma_{a}^{2}+\sigma_{s}^{2}\right)}{2(1-\rho)}
$$

- Note that the bound suggests that large variance means large waiting time


## Approximation for G/G/m queue

- Only approximate waiting time available for $G / G / m$
- The waiting time is

$$
\begin{aligned}
W_{G / G / m}= & W_{M / M / m} \frac{C_{a}^{2}+C_{s}^{2}}{2} \\
\text { where } \quad & W_{M / M / m}=\text { Waiting time of M/M/m queue } \\
& C_{a}=\text { Coeff of variation of inter-arrival time } \\
& C_{b}=\text { Coeff of variation of service time }
\end{aligned}
$$

- Coefficient of variation of a random variable $X$
$=$ Standard deviation of $X /$ mean of $X$

Note: Variance in arrival or service time increases queueing

## Queuing disciplines



- We have focused on first-come first-serve (FCFS) queues so far
- However, sometimes you may want to give some jobs a higher priority than others
- Priority queues can be classified as
- Non-preemptive
- Preemptive resume


## What is priority queueing?

High priority jobs


Low priority jobs

- A job with low priority will only get served if the high priority queue is empty
- Each priority queue is a FCFS queue
- Exercise: If the server has finished a job and finds 1 job in the high priority queue and 3 jobs in the low priority queue, which job will the server start to work on?
- Repeat the exercise when the high priority queue is empty and there are 3 jobs in the low priority queue.


## Preemptive and non-preemptive priority (1)

- Example:


Low priority job queue


## Preemptive and non-preemptive priority (2)

- Non-preemptive:
- A job being served will not be interrupted (even if a higher priority job arrives in the mean time)
- Example: High priority job (red), low priority job (green)



## Preemptive and non-preemptive priority (3)

- Preemptive resume:
- Higher priority job will interrupt a lower priority job under service. Once all higher priorities served, an interrupted lower priority job is resumed.
- Example: High priority job (red), low priority job (green)

Job in

Time t=10: A high priority job requiring 1s of processing arrives.

The server starts processing the job that is pre-empted at time $t=10$ high priority job immediately

## Example of non-preemptive priority queueing

High priority packets


## Low priority packets

- Example: In the output port of a router, you want to give some packets a higher priority
- In Differentiated Service
- Real-time voice and video packets are given higher priority because they need a lower end-to-end delay
- Other packets are given lower priority
- You cannot preempt a packet transmission and resume its transmission later
- A truncated packet will have a wrong checksum and packet length etc.


## Example of preemptive resume priority queueing

- E.g. Modelling multi-tasking of processors
- Can interrupt a job but you need to do context switching (i.e. save the registers for the current job so that it can be resumed later)


## M/G/1 with priorities

- Separate queue for each priority (see picture next page)
- Classified into P priorities before entering a queue
- Priorities numbered 1 to P, Queue 1 being the highest priority
- Arrival rate of priority class pis

$$
\lambda_{p} \text { where } p=1, \cdots P
$$

- Average service time and second moment of class p requests is given by

$$
E\left[S_{p}\right] \text { and } E\left[S_{p}^{2}\right]
$$

## Priority queue

Arrival rate for each priority class
Highest priority


Let us derive the waiting time for $P=2$

## Deriving the non-preemptive queue result (1)

High priority

Low priority


- $S_{1}$ - service time for Class 1 with mean $E\left[S_{1}\right]$
- $\mathrm{W}_{1}=$ mean waiting time for Class 1 customers
- $\mathrm{N}_{1}=$ number of Class 1 customers in the queue
- $\mathrm{R}=$ mean residual service time when a customer arrives
- We have for Class 1: $\mathrm{W}_{1}=\mathrm{N}_{1} \mathrm{E}\left[\mathrm{S}_{1}\right]+\mathrm{R}$
- Little's Law: $\mathrm{N}_{1}=\lambda_{1} \mathrm{~W}_{1}$

$$
W_{1}=\frac{R}{1-\rho_{1}} \quad \text { where } \quad \rho_{1}=\lambda_{1} E\left[S_{1}\right]
$$

## Deriving the non-preemptive queue result (2)

High priority

Low priority


- To find the residual service time R, note that the customer in the server can be a high or low priority customer, we have

- The waiting time is therefore
$W_{1}=\square$


## Deriving the non-preemptive queue result (3)

High priority

Low priority


- $\mathrm{S}_{2}$ - service time for Class 2 with mean $\mathrm{E}\left[\mathrm{S}_{2}\right]$
- $\mathrm{W}_{2}=$ mean waiting time for Class 2 customers
- $\mathrm{N}_{2}=$ number of Class 2 customers in the queue
- $\mathrm{R}=$ mean residual service time when a customer arrives


## Deriving the non-preemptive queue result (4)

High priority

Low priority


- For Class 2 customers:

Question:
Consider a customer arriving at the low priority queue, when can this customer receive service?

You can divide the waiting time for this customer into 4 components, what are they?

## Deriving the non-preemptive queue result (5)

$$
W_{2}=
$$

- Little's Law to Queue 1:

$$
N_{1}=\lambda_{1} W_{1}
$$

- Little's Law to Queue 2:

$$
N_{2}=\lambda_{2} W_{2}
$$

- Combining all of the above

$$
W_{2}=\frac{R+\rho_{1} W_{1}}{1-\rho_{1}-\rho_{2}} \quad \text { Where } \quad \begin{aligned}
& \rho_{2}=\lambda_{2} E\left[S_{2}\right] \\
& \rho_{1}=\lambda_{1} E\left[S_{1}\right]
\end{aligned}
$$

## Deriving the non-preemptive queue result (6)

High priority

Low priority


$$
\begin{aligned}
& W_{2}=\frac{R}{\left(1-\rho_{1}\right)\left(1-\rho_{1}-\rho_{2}\right)} \\
& W_{1}=\frac{R}{1-\rho_{1} \quad \text { where } \quad \begin{array}{l}
\rho_{1}=\lambda_{1} E\left[S_{1}\right] \\
\rho_{2}=\lambda_{2} E\left[S_{2}\right] \\
R=\frac{1}{2} E\left[S_{1}^{2}\right] \lambda_{1}+\frac{1}{2} E\left[S_{2}^{2}\right] \lambda_{2}
\end{array}}
\end{aligned}
$$

Non-preemptive Priority with $P$ classes
Waiting time of priority class k

$$
\begin{aligned}
& W_{k}=\frac{R}{\left(1-\rho_{1}-\ldots-\rho_{k-1}\right)\left(1-\rho_{1}-\ldots-\rho_{k}\right)} \\
& \text { where } \quad R=\frac{1}{2} \sum_{i=1}^{P} E\left[S_{i}^{2}\right] \lambda_{i} \\
& \qquad \rho_{i}=\lambda_{i} E\left[S_{i}\right] \text { for } i=1, \ldots, P
\end{aligned}
$$

## Example

- Router receives packet at 1.2 packets/ms (Poisson), only one outgoing link
- Assume $50 \%$ packet of priority $1,30 \%$ of priority 2 and $20 \%$ of priority 3. Mean and second moment given in the table below.
- What is the average waiting time per class?
- Solution to be discussed in class.

| Priority | Mean (ms) | 2nd Moment (ms ${ }^{2}$ ) |
| :--- | :--- | :--- |
| 1 | 0.5 | 0.375 |
| 2 | 0.4 | 0.400 |
| 3 | 0.3 | 0.180 |

## Pre-emptive resume priority (1)

- Can be derived using a similar method to that used for nonpreemptive priority
- The key issue to note is that a job with priority k can be interrupted by a job of higher priority even when it is in the server
- For $k=1$ (highest priority), the response time $\mathrm{T}_{1}$ is:

$$
T_{1}=E\left[S_{1}\right]+\frac{R_{1}}{\left(1-\rho_{1}\right)}, \begin{aligned}
& \text { where } \\
& R_{1}=\frac{1}{2} E\left[S_{1}^{2}\right] \lambda_{1} \\
& \rho_{1}=E\left[S_{1}\right] \lambda_{1}
\end{aligned}
$$

A highest priority job only has to wait for the highest priority - jobs in front of it.

## Preemptive resume priority (2)

- For $k \geq 2$, we have response time for a job in Class $k$ :

Question:
Consider a customer arriving in priority class $\mathrm{k}(\geq 2)$, what are the components of the waiting time for this customer?

## Preemptive resume priority (3)

- Solving these equations, we have the response time of Class $k$ jobs is:

$$
T_{k}=T_{k, 1}+T_{k, 2}
$$

where

$$
\begin{aligned}
T_{k, 1} & =\frac{E\left[S_{k}\right]}{\left(1-\rho_{1}-\ldots-\rho_{k-1}\right)} \\
T_{k, 2} & =\frac{R_{k}}{\left(1-\rho_{1}-\ldots-\rho_{k-1}\right)\left(1-\rho_{1}-\ldots-\rho_{k}\right)} \\
R_{k} & =\frac{1}{2} \sum_{i=1}^{k} E\left[S_{i}^{2}\right] \lambda_{i}
\end{aligned}
$$

## Other queuing disciplines

- There are many other queueing disciplines, examples include
- Shortest processing time first
- Shortest remaining processing time first
- Shortest expected processing time first
- Optional: For an advanced exposition on queueing disciplines, see Kleinrock, "Queueing Systems Volume 2", Chapter 3.


## Summary

- We have studied a few types of non-Markovian queues
- M/G/1, G/G/1, G/G/m
- M/G/1 with priority
- Key method to derive the M/G/1 waiting time (with and without priority) is via the residual service time


## References

- Recommended reading
- Bertsekas and Gallager, "Data Networks"
- Section 3.5 for M/G/1 queue
- Section 3.5.3 for priority queuing
- The result on $\mathrm{G} / \mathrm{G} / 1$ bound is taken from Section 3.5.4

