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Week 3: Queues with Poisson arrivals (1)

|
* Single-server M/M/1

Exponential inter-arrivals () Arrivals Departures
Exponential service time (W) -

* By using a Markov chain, we can show that the mean
response time is: |

o — A
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Week 3: Queues with Poisson arrivals

 Multi-server M/M/m

I
Arrivals 4@_"
Departures
Exponential inter-arrivals (A) C

Exponential service time (W)

* By using Markov chain, we 4{1\)——'

know the mean response

time Is m servers
C(pa m) , 1 A (mp)™
1" = ! p=_— Clom= AR
m,u,(l . p) 'LL mi (1=p) 2o o+
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Week 4: Closed-queueing networks

I
* Analyse closed-queueing network with Markov chain

* The transition between states is caused by an arrival or a
departure according to exponential distribution

CPU
* General procedure
D_' * |dentify the states
* Find the state transition rates
e Set up the balance equations
* Solve for the steady state
probabilities
— 04—' * Find the response time etc.
Disk
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This lecture: Road Map

I
e Single-server queues

* What if the arrival rate and/or the service rate is not exponentially
distributed

e Multi-server queues

 What if the arrival rate and/or the service rate is not exponentially
distributed

* Queueing networks
e Queuing disciplines
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General single-server queues

Arrivals Departures
— —

* Need to specify the
* Inter-arrival time probability distribution
* Service time probability distribution

* Independence assumptions
* All inter-arrival times are independent

* All service times are independent

 The amount of service of customer A needs is independent of the amount of
time customer B needs

* The inter-arrival time and service time are independent of each other
* Under the independence assumption, we can analyse a number of
types of single server queues

* Without the independence assumption, queueing problems are very
difficult to solve!
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Classification of single-server queues

Arrivals Departures
= 0 =

* Recall Kendall's notation: “M/M/1” means
* “M”in the 1st place means inter-arrival time is exponentially distributed

* “M”in the 2nd place means service time probability is exponentially distributed
* “1"in 3rd position means 1 server

* We use a “G” to denote a general probability distribution
* Meaning any probability distribution
» Classification of single-server queues:

Service time Distribution: ’
Exponential General
Inter-arrival time Exponential M/M/1 M/G/1
| istribution: General GIM/1 GIG/
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Example M/G/1 queue problem

e Consider an e-mailer server

e E-mails arrive at the mail server with a Poisson distribution
with mean arrival rate of 1.2 messages/s

e The service time distribution of the emails are:
* 30% of messages processedin 0.1s,50%in 0.3s,20%in2s

e Whatis

* Average waiting time for a message?

* Average responsetime for a message?

* Average number of messagesin the mail system?
* This is an M/G/1 queue problem

* Arrival is Poisson

e Service time is not exponential

* |In order to solve an M/G/1 queue, we need to understand
what the moment of a probability distribution is.
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Revision: moment of a probability distribution (1)

I
* Consider a discrete probability distribution

* There are n possible outcomes: x4, Xo, ..., X,
* The probability that x; occurs is p;

 Example: For a fair dice
* The possible outcomes are 1,2,...,6
* The probability that each outcome occurs is 1/6

* The first moment (also known as the mean or expected
value) is

ElX]= Z LiPi
i=1

e For a fair dice, the first moment is
=1*16+2*1/6+...+6*1/6 =3.5
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Revision: moment of a probability distribution (2)

* The second moment of a discrete probability distribution is
T
2 2
E[X7] = E Ly Pi
1=1

e For a fair dice, the second moment is
=12*1/6 +22*1/6+ ... +62* 1/6

* You can prove that
e Second moment of X = (E[X])? + Variance of X

* Note: The above definitions are for discrete probability
distribution. We will look at continuous probability
distribution a moment later

51,2016 COMP9334 10



Solution to M/G/1 queue

I
* M/G/1 analysis is still tractable

* M/G/1 is no longer a Markov chain

* For a M/G/1 queue with the characteristics
* Arrival is Poisson with rate A
e Service time S has
* Mean = 1/ u = E[S] = First moment
e Second moment = E[S?]
* The mean waiting time W of a M/G/1 queue is given by the
Pollaczek-Khinchin (P-K) formula:

\E[S?]

Yo 2(1—p)

A
where P = —
v
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Back to our example queueing problem (1)

|
e Consider an e-mailer server

e E-mails arrive at the mail server with a Poisson distribution
with mean arrival rate of 1.2 messages/s

e The service time distribution of the emails are:
* 30% of messages processedin 0.1s,50%in 0.3s,20%in2s

* Exercise: In order to find the mean waiting time using the
P-K formula, we need to know
* Mean arrival rate,
* Mean service time, and,
 Second moment of service time.

e Can you find them?
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Back to our example queueing problem (2)

|
e Consider an e-mailer server

e E-mails arrive at the mail server with a Poisson distribution
with mean arrival rate of 1.2 messages/s

e The service time distribution of the emails are:
* 30% of messages processedin 0.1s,50%in 0.3s,20%in2s

e Solution

e Mean arrival rate =
e Mean service time

e Second moment of the service time

* You now have everything you need to compute the mean
waiting time using the P-K formula
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Back to our example queueing problem (3)

e Since

* Mean arrival rate A = 1.2 messages/s

* Mean service time (E[S] or 1/ u) = 0.58s

¢ Second moment of mean service time E[S?] = 0.848 s?
e Utilisationp=A/u=AE[S]=1.2*0.58 =0.696
e Substituting these values in the P-K formula

\E[S?]
2(1—p)
*How about:

*Average response time for a message
*Average number of messagesin the mail system

W — W = 1.673s.
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Back to our example queueing problem (4)

I
Since the mean waiting time W = 1.673s.

The mean response time T is
T=

Average # messages in the system

Exercise: Can you use mean waiting time and Little’s
Law to determine the mean number of messages in
the queue?
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Understanding the P-K formula

e Since the Second moment of S = E[S]? + Variance of S

* We can write the P-K formula as
* Meaning waiting time =

AE[S]? + 02)
2(1 - p)

e Smaller variance in service time =» smaller waiting time
* M/D/1 is a special case of M/G/1

« “D” stands for deterministic: Constant service time E[S] and
Variance of S =0

* For the same value of p and E[S], deterministic has the smallest
mean response time

W =

51,2016 COMP9334
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Moments for continuous probability density

I
e Exponential function is a continuous probability density
* |f a random variable X has continuous probability density
function f(x), then its
e first moment (= mean, expected value) E[X] and
e second moment E[X?]

are given by _ _ _
 |fthe servicetime S is

exponential with rate u,
EFX|= [ zf(x)dx then

e E[S]=1/u
e E[S2]=2/p2

E[X?] = / x” f(x)dx

51,2016 COMP9334
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M/M/1 as a special case of M/G/1

* Let us apply the result of the M/G/1 queue to exponential
service time
e Letusput E[S]=1/uand E[S?] =2/ u? inthe P-K formula:

\E[S?]
W =
2(1 —p)
* We get 0
W =
u(l—p)

* Which is the same as the M/M/1 queue waiting time
formula that we derive in Week 3
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Remark on M/G/1

W =

° pe’I,Weoo

\E[S?]

2(1—p)
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Deriving the P-K formula (1)

Queue a
_——— = =
AN AN AN
Alice: This This
An arriving customer customer
customer needs 5 min needs 6 min

* How long does Alice (the arriving
customer) need to wait before she gets
served?

Server

N\

This
customer still
needs 3 min
when Alice
joins the
queue

Residual
Service
Time

51,2016 COMP9334
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Deriving the P-K formula (2)

P Let Arrival rate )L D
* W = Mean waiting time —
* N = Mean number of
customers in the queue e ............ :
1/ u = Mean service time * Applying Little’s Law to
* R = Mean residual the queue
service time e N=LW
* We can prove that —
e W=N*(1/u)+R
o Substitution
1 R
W=AxWx—-+4+R=>W= 7
T —p
A
where p = —
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Deriving P-K formula (3)

* We have just showed * The P-K formula says
that the mean waiting
time in a M/G/1 queue 2
i b AE[S”
R 2(1 - p)
W =
1—p

* We can prove the P-K formula if we can show that the
mean residual time R is

R = %AE[SZ]
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How residual service time changes over time?
Job index Arrival time Processing time required
1 2 2
2 6 4
3 8 4
Time when
each job is

being served:

Residual
service time 4
seen by a 2
customer 2‘ I :
arriving at
time ¢ D ) ” 14
2
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What is the mean residual time ...

I
Residual service time seen by a customer arriving at

time t

Mean residual time seen by an arriving customer over time [0,14]
~ Area under the curve over |0,14]
B 14

Service time!

1 a2, 1o 2,142
5 X 2% + 5 X 4 + 5 X 4
o 14 Note: This is an application of PASTA
Poisson arrivals see time averages
(See Week 3) o4
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‘ In general
I

Residual service time seen by a customer arriving at
time t

) T
) —
T
Nu
S
81“\ 5 | R
— < Fom e > — ¢
81 S2 S3 S4
Assuming M jobs are completed intime T
Mean residual time
M 1 @2 M @2
T 2 M T 2
\ w
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\ The P-K formula

|
e Thus, the mean residual time R is

1
R
1 —p

» By substituting this into T/ =

* We get the P-K formula

* This derivation also shows that the waiting time is
proportional to the residual service time

* The residual service time is proportional to the 2nd moment
of service time

51,2016 COMP9334
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G/G/1 queue

* G/G/1 queue are harder to analyse

* Generally, we cannot find an explicit formula for the the
waiting time or response time for a G/G/1 queue

* Results on G/G/1 queue include
* Approximation results
* Bounds on waiting time

51,2016 COMP9334
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Approximate G/G/1 waiting time

* There are many different methods to find the approximate waiting time
for a G/G/1 queue

* Most of the approximation works well when the traffic is heavy, i.e.
when the utilisation p is high

e |et

* Mean arrival rate = A

» Variance of inter-arrival time = 0,2

e Service time S has mean 1/ u = E[S]
* Variance of service time = ¢?

* The approximate waiting time for a G/G/1 queue is
A (og +03) ME[S]” + o7)
1 4+ A\202 2(1 — p)

* Note:p —1, W —
e Large variance means large waiting time

where 10 —

W ~

= | >

51,2016 COMP9334
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Bounds for G/G/1 waiting time

e Let

* Mean arrival rate = A

e Variance of inter-arrival time = 0,2

* Service time S has mean 1/ u = E[S]
e Variance of service time = o2

* A bound for the waiting time for a G/G/1 queue is

2 2
2(1—p)

* Note that the bound suggests that large variance means
large waiting time

51,2016 COMP9334
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‘ Approximation for G/G/m queue

I
* Only approximate waiting time available for G/G/m

* The waiting time is

C? + C?
Waia/m =W mm :

where Wt arm = Waiting time of M/M/m queue
(', = Coeft of variation of inter-arrival time
(', = Coeff of variation of service time

e Coefficient of variation of a random variable X
= Standard deviation of X/ mean of X

Note: Variance in arrival or service time increases queueing
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Queuing disciplines

Arrivals Departures
 —— —_—

* We have focused on first-come first-serve (FCFS) queues
so far

* However, sometimes you may want to give some jobs a
higher priority than others

* Priority queues can be classified as
* Non-preemptive
* Preemptive resume

51,2016 COMP9334
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‘ What is priority queueing?

| High priority jobs

Arrivals J/ \ : Departures

Low priority jobs

* A job with low priority will only get served if the high priority queue is
empty

* Each priority queue is a FCFS queue

» Exercise: If the server has finished a job and finds 1 job in the high
priority queue and 3 jobs in the low priority queue, which job will the
server start to work on?

* Repeatthe exercise when the high priority queue is empty and there are 3
jobs in the low priority queue.
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Preemptive and non-preemptive priority (1)

° Example: High priority job queue @—>

Low priority job queue

Job in
server

time
9 10
Timet=9 / \

* The high priority job queue is Time t =10 : A high
empty priority job requiring 1s

* The server starts serving a low of processing arrives
priority job which requires 2s of
processing
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Preemptive and non-preemptive priority (2)

|
* Non-preemptive:

* Ajob being served will not be interrupted (even if a higher
priority job arrives in the mean time)

* Example: High priority job (red), low priority job (green)

Job in
server

9 10 11 time
Time t =10 : A high priority Time t = 11  Server finishes
job requiring 1s of processing the low priority job. It
processing arrives. takes the high priority job in from
The job joins the high priority the queue
queue
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Preemptive and non-preemptive priority (3)

|
* Preemptive resume:

e Higher priority job will interrupt a lower priority job under service. Once
all higher priorities served, an interrupted lower priority job is resumed.

* Example: High priority job (red), low priority job (green)

Job in
server
> time

9 10

/'

Time t =10 : A high priority job
requiring 1s of processing
arrives.

The server starts processing the
high priority job immediately

11

—~

Time t = 11 . Server finishes processing
the high priority job. Since no high
priority job arrives in (10,11], the high
priority job queue is empty, it
resumes processing the low priority
job that is pre-empted at time t = 10

51,2016 COMP9334
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‘ Example of non-preemptive priority queueing

| High priority packets

Arrivals J/ \ : Departures

Low priority packets

 Example: In the output port of a router, you want to give some packets a higher
priority
* In Differentiated Service

* Real-time voice and video packets are given higher priority because they need
a lower end-to-end delay

* Other packets are given lower priority
* You cannot preempt a packettransmission and resume its transmission later
* A truncated packetwill have a wrong checksum and packet length etc.
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Example of preemptive resume priority queueing

* E.g. Modelling multi-tasking of processors

* Can interrupt a job but you need to do context switching
(i.e. save the registers for the current job so that it can be
resumed later)

51,2016 COMP9334
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M/G/1 with priorities

e Separate queue for each priority (see picture next page)
» Classified into P priorities before entering a queue
* Priorities numbered 1 to P, Queue 1 being the highest priority

* Arrival rate of priority class p is

A, wherep = 1,---P

* Average service time and second moment of
class p requests is given by

E[Sp] andE[Si]

51,2016 COMP9334
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\ Priority queue

|
Arrival rate for each priority class

Highest A\ ‘/

] —

priority
Ay —
: Departures
Lowest A\
. E———
priority P Let us derive the waiting

time for P =2
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Deriving the non-preemptive queue result (1)

High priority A 1] —— — Departures

e S, -service time for Class 1 with mean E[S/]
* W, = mean waiting time for Class 1 customers
* N, = number of Class 1 customers in the queue

e R = mean residual service time when a customer arrives
* We have for Class 1: W, =N, E[S4] + R
e Little’'s Law: N, = Ay W,

R
Wl p— 1 _ 1 where (1 = /\1E[Sl]

Low priority Ay —
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Deriving the non-preemptive queue result (2)

High priority /\1 _ — Departures

* To find the residual service time R, note that the customer in
the server can be a high or low priority customer, we have

Low priority Ay —

R =

* The waiting time is therefore

Wi =
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Deriving the non-preemptive queue result (3)

Low priority )\2 —_—

High priority ™ A\ —— I

Departures

S, - service time for Class 2 with mean E[S,]

W, = mean waiting time for Class 2 customers

N, = number of Class 2 customers in the queue

R = mean residual service time when a customer arrives
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Deriving the non-preemptive queue result (4)
I

High priority )\1 —_— — Departures

Low priority Ay ——

e For Class 2 customers:

Question:

Consider a customer arriving at the low priority queue, when
can this customer receive service?

You can divide the waiting time for this customer into 4
components, what are they?
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‘ Deriving the non-preemptive queue result (5)

Wy =

e Little’'s Law to Queue 1: e Little’'s Law to Queue 2:

Ny =\ Wy Ny = AWy

* Combining all of the above
B R + ,01W1 Where P2 = /\QE[SQ]
1 —p1—po p1 =M E5)]

Wy
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Deriving the non-preemptive queue result (6)

|
High priority

)‘1 EE—— — Departures

Low priority Ay —

R
Wo =
(1= p1)(1 = p1 —p2)
R where  P1 = A1 B[S
Wl P2 = )\QESQ

1= L 1
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‘ Non-preemptive Priority with P classes

I
Waiting time of priority class k

R
W= (L—=p1— o= pr—1)(L = p1— . — pr)
where R = 1zP:E[Sz]/\Z
2o
p; = NE|S;| fori=1,..., P

51,2016 COMP9334
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Example

* Routerreceives packetat 1.2 packets/ms (Poisson), only one

outgoing link

* Assume 50% packet of priority1, 30% of priority 2 and 20% of
priority 3. Mean and second momentgiven in the table

below.

* Whatis the average waiting time per class?
e Solutionto be discussed in class.

Priority Mean (ms) |2nd Moment (ms?)
1 0.5 0.375
2 0.4 0.400
3 0.3 0.180

51,2016 COMP9334
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Pre-emptive resume priority (1)

Can be derived using a similar method to that used for non-
preemptive priority
* The key issue to note is that a job with priority k can be

interrupted by a job of higher priority even when it is in the
server

* For k = 1 (highest priority), the response time T, is:

Ty = E[S)] 4+ —L " = 5 EISTA
1 — 1] 7
1 =p1) p1 = B[Si]A

A highest priority job only has to wait for the highest priority

— jobs in front of it.
51,2016 COMPY334
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Preemptive resume priority (2)

* For k = 2, we have response time for a job in Class k:
L. 1

Question:

Consider a customer arriving in priority class k (= 2), what are the
components of the waiting time for this customer?
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Preemptive resume priority (3)

* Solving these equations, we have the
response time of Class k jobs is:

Iy =11+ 1o

where
k1l = 15k
T (l=pr— = pro1)
R
Lo = -
1=p1— o= pr—1)d —p1 — .. — pi)

k
1 2
Ri = ;Zl:E[SZ-])\z

51,2016 COMP9334
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Other queuing disciplines

* There are many other queueing disciplines, examples
iInclude
* Shortest processing time first
e Shortest remaining processing time first
* Shortest expected processing time first

* Optional: For an advanced exposition on queueing
disciplines, see Kleinrock, “Queueing Systems Volume 27,
Chapter 3.
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Summary

* We have studied a few types of non-Markovian queues
« M/G/1, GIG/1, GIG/m
 M/G/1 with priority
* Key method to derive the M/G/1 waiting time (with and
without priority) is via the residual service time

51,2016 COMP9334
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References

* Recommended reading

* Bertsekas and Gallager, “Data Networks”
e Section 3.5 for M/G/1 queue
e Section 3.5.3 for priority queuing
 The result on G/G/1 bound is taken from Section 3.5.4
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