Glossary
 COMP6741: Parameterized and Exact Computation

2018, Semester 2

Glossary

acyclic: A graph is acyclic if it has no cycle as a subgraph.
bipartite: A graph $G=(V, E)$ is bipartite if its vertex set can be partitioned into two independent sets. A partition (A, B) of V into independent sets is called a bipartition of G. The graph G is then often denoted by $G=(A \uplus B, E)$.

Boolean formula: A Boolean formula is constructed from Boolean variables that can take the values true and false (or 1 and 0) by the following operations: conjunction (AND, \wedge), disjunction (OR, \vee), and negation (NOT, ᄀ).
clique: A subset of vertices $S \subseteq V$ of a graph $G=(V, E)$ is a clique in G if $G[S]$ is a complete graph.
closed neighborhood: The closed neighborhood of a vertex v in a graph G is $N_{G}[v]:=\{v\} \cup N_{G}(v)$. The subscript may be omitted if G is clear from the context.
closed set neighborhood: The closed neighborhood of a subset of vertices $S \subseteq V$ in a graph $G=(V, E)$ is $N_{G}[S]:=\bigcup_{v \in S} N_{G}[v]$. The subscript may be omitted if G is clear from the context.
coloring: A coloring of a graph $G=(V, E)$ is a function from V to a set of colors (integers) such that every two adjacent vertices in G are mapped to different colors. A k-coloring is a coloring using exactly k colors.
complete: A graph G is complete if there is an edge between each pair of vertices in G. A complete graph on n vertices is denoted by K_{n}.

Conjunctive Normal Form: A Boolean formula is in Conjunctive Normal Form if it is a conjunction of clauses, each clause is a disjunctions of literals, and each literal is a Boolean variable or its negation..
connected: A graph G is connected if there is a walk between every two vertices of G.
connected component: Maximal connected subgraph.
cycle: 2-regular connected graph. A cycle on n vertices is denoted C_{n}.
degree: The degree of a vertex v in a graph G is $d_{G}(v):=\left|N_{G}(v)\right|$. The subscript may be omitted if G is clear from the context. The degree of a vertex v in a multigraph: G is the number of times v appears as an end point of an edge in E..
directed acyclic graph: A directed acyclic graph (DAG) is a directed graph that contains no directed cycle as a directed subgraph.
directed cycle: Orientation of a cycle where each vertex has in-degree 1.
directed graph: A directed graph G is an ordered pair (V, A) of a set V of vertices and a set A of arcs, where A is a set of ordered pairs of vertices. Its vertex set is $V(G)=V$ and its arc set is $A(G)=A$.
directed path: Orientation of a path where each vertex has in-degree 1, except the start vertex, which has in-degree 0 and out-degree 1 .
disjoint union: For two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ with $V_{1} \cap V_{2}=\emptyset$, the disjoint union of G_{1} and G_{2}, denoted $G_{1} \oplus G_{2}$ is the graph $\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$; in case $V_{1} \cap V_{2} \neq \emptyset$, vertices need to be renamed before we can take the disjoint union of these graphs.
distance: In a graph G, the distance between two vertices $u \in V$ and $v \in V$ is the length of the shortest walk minus one between u and v, that is the minimum number of edges needed to be traversed to reach v from u and it is denoted by $\operatorname{dist}_{G}(u, v)$.
dominating set: A subset of vertices $S \subseteq V$ of a graph $G=(V, E)$ is a dominating set of G if $N_{G}[S]=V$.
feedback vertex set: A feedback vertex set of a graph $G=(V, E)$ is a subset of vertices $S \subseteq V$ such that $G-S$ is acyclic.
forest: Acyclic graph.
graph: A (simple, undirected) graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges, where E is a set of unordered pairs of distinct vertices. Its vertex set is $V(G)=V$ and its edge set is $E(G)=E$.
in-degree: The in-degree of a vertex v in a directed graph D is $d_{D}^{-}(v):=|\{u v \in A\}|$. The subscript may be omitted if D is clear from the context.
independent set: A subset of vertices $S \subseteq V$ of a graph $G=(V, E)$ is an independent set of G if $G[S]$ has no edges.
induced subgraph: For a graph $G=(V, E)$ and a vertex set $S \subseteq V$, the subgraph of G induced on S is the graph $G[S]:=(S,\{u v \in E: u, v \in S\})$.
maximal (set): For a set \mathcal{S} of subsets of a ground set U, a set $X \in \mathcal{S}$ is maximal if there exists no set $Y \in \mathcal{S}$ with $X \subsetneq Y$.
maximum (set): For a set \mathcal{S} of subsets of a ground set U, a set $X \in \mathcal{S}$ is maximum if there exists no set $Y \in \mathcal{S}$ with $|Y|>|X|$.
maximum degree: The maximum degree of a graph $G=(V, E)$ is $\Delta(G):=\max _{v \in V} d_{G}(v)$.
minimum degree: The minimum degree of a graph $G=(V, E)$ is $\delta(G):=\min _{v \in V} d_{G}(v)$.
multigraph: A multigraph G is an ordered pair (V, E) of a set V of vertices and a multiset E of edges, where E is a multiset of unordered pairs of vertices. Its vertex set is $V(G)=V$ and its edge set is $E(G)=E$.
open neighborhood: The (open) neighborhood of a vertex v in a graph $G=(V, E)$ is $N_{G}(v):=\{u \in V$: $u v \in E\}$. The subscript may be omitted if G is clear from the context.
open set neighborhood: The (open) neighborhood of a subset of vertices $S \subseteq V$ in a graph $G=(V, E)$ is $N_{G}(S):=N_{G}[S] \backslash S$. The subscript may be omitted if G is clear from the context.
order of growth: Let $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a function. The set $O(g(n))$ contains every function f such that there exist $c, n_{0} \geq 0$ such that $f(n) \leq c \cdot g(n)$ for every $n \geq n_{0}$. The set $o(g(n))$ contains every function f such that for every $\epsilon>0$ there exists a $n_{0} \geq 0$ such that $f(n) \leq \epsilon \cdot g(n)$ for every $n \geq n_{0}$. For the set $\Omega(g(n))$, we have that $f(n) \in \Omega(g(n))$ iff $g(n) \in O(f(n))$. For the set $\omega(g(n))$, we have that $f(n) \in \omega(g(n))$ iff $g(n) \in o(f(n))$. For the set $\Theta(g(n))$, we have that $\Theta(g(n))=O(g(n)) \cap \Omega(g(n))$.
orientation: An orientation of a graph G is a directed graph D that has exactly one arc for each edge of G with the same endpoints.
out-degree: The out-degree of a vertex v in a directed graph D is $d_{D}^{+}(v):=|\{v u \in A\}|$. The subscript may be omitted if D is clear from the context.
path: Tree with maximum degree at most 2 . A path on n vertices is denoted P_{n}.
regular: A graph is d-regular if each of its vertices has degree d. A graph is regular if it is d-regular for some d.
subgraph: A graph H is a subgraph of a graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
tree: Acyclic, connected graph.
vertex cover: A subset of vertices $S \subseteq V$ of a graph $G=(V, E)$ is a vertex cover of G if each edge of G is incident to at least one vertex of S.
vertex removal: For a graph $G=(V, E)$ and a vertex set $S \subseteq V$, the graph obtained by removing S from G is $G-S:=G[V \backslash S]$. If $S=\{u\}$, we may write $G-u$ instead of $G-\{u\}$.
walk: Sequence of vertices in a graph, with each vertex being adjacent to the vertices immediately preceding and succeeding it in the sequence.

Problem Definitions

k-Coloring

Given a graph G, determine if there is a coloring of G with at most k colors.
k-SAT
Given a Boolean formula in Conjunctive Normal Form where each clause has at most k literals, determine if there is an assignment of its variables such that the formula evaluates to true.

Dominating Set

Given a graph G and an integer k, determine whether G has a dominating set of size k.

Feedback Vertex Set

Given a (multi)graph G and an integer k, determine whether G has a feedback vertex set of size at most k.

Independent Set

Given a graph G and an integer k, determine whether G has an independent set of size k.

Maximum Independent Set

Given a graph G, find an independent set of G of maximum cardinality.

Minimum Vertex Cover

Given a graph G, find a vertex cover of G of minimum cardinality.
SAT
Given a Boolean formula, determine if there is an assignment of its variables such that the formula evaluates to true.

Traveling Salesman Problem
Given a set $\{1, \ldots, n\}$ of n cities, the distance $d(i, j)$ between every two cities i and j, and an integer k, determine whether there is a tour with total distance at most k. A tour is a permutation of the cities starting and ending in city 1.

Vertex Cover
Given a graph G and an integer k, determine whether G has a vertex cover of size k.

