COMP4418: Knowledge Representation and Reasoning

 Introduction to Prolog II

 Introduction to Prolog II}

Maurice Pagnucco
School of Computer Science and Engineering
University of New South Wales
NSW 2052, AUSTRALIA
morri@cse.unsw.edu.au

Reference: Ivan Bratko, Prolog Programming for Artificial Intelligence, AddisonWesley, 2001. Chapter 3.

Prolog

\square Compound terms can contain other compound terms

- A compound term can contain the same kind of term, i.e., it can be recursive:
tree(tree(empty, jack, empty), fred, tree(empty, jill, empty))
■ "empty" is an arbitrary symbol use to represent the empty tree
\square A structure like this could be used to represent a binary tree that looks like:

Binary Trees

A binary tree is either empty or it is a structure that contains data and left and right subtrees which are also binary trees

- To test if some datum is in the tree:

```
in_tree(X, tree(_, X, _)).
in_tree(X, tree(Left, Y, _) :-
        X \= Y,
        in_tree(X, Left).
in_tree(X, tree(_, Y, Right) :-
    X \= Y,
    in_tree(X, Right).
```


The Size of a Tree

\square

```
tree_size(empty, 0).
tree_size(tree(Left, _, Right), N) :-
    tree_size(Left, LeftSize),
    tree_size(Right, RightSize),
    N is LeftSize + RightSize + 1.
```

\square The size of the empty tree is 0

- The size of a non-empty tree is the size of the left subtree plus the size of the right subtree plus one for the current node

Lists

- A list may be nil or it may be a term that has a head and a tail. The tail is another list.
- A list of numbers, [1, 2, 3] can be represented as:

- Since lists are used so often, Prolog has a special notation:

$$
[1,2,3]=\operatorname{list}(1, \text { list(2, list(3, nil))) }
$$

Examples of Lists

More list examples

$$
\begin{array}{ll}
{[X, Y \mid Z]=[f r e d, j i m, j i l l, m a r y] ?} & \begin{array}{l}
\text { There must be at least two } \\
\text { elements in the list on the right }
\end{array} \\
X=\text { fred } & \\
Y=j i m & \\
Z=[j i l l, \operatorname{mary}] & \\
{[X \mid Y]=[[a, f(e)],[n, b,[2]]] ?} & \text { The right hand list has two elements: } \\
X=[a, f(e)] & \begin{array}{l}
\text { Y is the tail of the list, } \\
\\
Y=[n, b,[2]]
\end{array} \\
& {[n, b \text { is just one element }}
\end{array}
$$

List Membership

```
member(X, [X|_]).
member(X, [_|Y]) :-
    member(X, Y).
```

- Rules about writing recursive programs:
\rightarrow Only deal with one element at a time
- Believe that the recursive program you are writing has already been written and works
- Write definitions, not programs

Appending Lists

\square A commonly performed operation on lists is to append one list to the end of another (or, concatenate two lists), e.g.,

$$
\text { append }([1,2,3],[4,5],[1,2,3,4,5]) \text {. }
$$

- Start planning by considering the simplest case:
append([], $[1,2,3],[1,2,3])$.
- Clause for this case:
append([], L, L).

Appending Lists

\square Next case:
append([1], [2], [1, 2]).

- Since append ([], [2], [2]):
append([H|T1], L, [H|T2]) :- append(T1, L, T2).
Entire program is:
append([], L, L).
append([H|T1], L, [H|T2]) :append (T1, L, T2).

Reversing Lists

$\square \operatorname{rev}([1,2,3],[3,2,1])$.
\square Start planning by considering the simplest case:

```
    rev([], []).
```

Note:
$\operatorname{rev}([2,3],[3,2])$.
and
append ([3, 2], [1], [3, 2, 1]).

Reversing Lists

- Entire program is:

```
rev([], []).
rev([A|B], C) :-
    rev(B, D),
    append(D, [A], C).
```


An Application of Lists

\square Find the total cost of a list of items:

```
cost(flange, 3).
cost(nut, 1).
cost(widget, 2).
cost(splice, 2).
```

- We want to know the total cost of [flange, nut, widget, splice]

```
total_cost([], 0).
total_cost([A|B], C) :-
        total_cost(B, B_cost),
        cost(A, A_cost),
        C is A_cost + B_cost.
```

