5. Basics of Parameterized Complexity
COMP6741: Parameterized and Exact Computation

Serge Gaspers1,2

1School of Computer Science and Engineering, UNSW Australia
2Optimisation Research Group, NICTA

Semester 2, 2015
Outline

1. Introduction
 - Vertex Cover
 - Coloring
 - Clique
 - Δ-Clique

2. Basic Definitions

3. Further Reading
Outline

1 Introduction
- Vertex Cover
- Coloring
- Clique
- \(\Delta\)-Clique

2 Basic Definitions

3 Further Reading
Outline

1. Introduction
 - Vertex Cover
 - Coloring
 - Clique
 - Δ-Clique

2. Basic Definitions

3. Further Reading
A vertex cover in a graph $G = (V, E)$ is a subset of its vertices $S \subseteq V$ such that every edge of G has at least one endpoint in S.

Vertex Cover

Input: A graph $G = (V, E)$ and an integer k

Parameter: k

Question: Does G have a vertex cover of size k?
Algorithms for Vertex Cover

- brute-force: $O^*(2^n)$
- brute-force: $O^*(n^k)$
- vc1: $O^*(2^k)$ (cf. Lecture 1)
- vc2: $O^*(1.4656^k)$ (cf. Lecture 1)
- fastest known: $O(1.2738^k + k \cdot n)$ [Chen, Kanj, Xia, 2010]
Running times in practice

$n = 1000$ vertices,
$k = 20$ parameter

<table>
<thead>
<tr>
<th>Theoretical</th>
<th>Running Time Nb of Instructions</th>
<th>Real</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^n</td>
<td>$1.07 \cdot 10^{301}$</td>
<td>$4.941 \cdot 10^{282}$ years</td>
</tr>
<tr>
<td>n^k</td>
<td>10^{60}</td>
<td>$4.611 \cdot 10^{41}$ years</td>
</tr>
<tr>
<td>$2^k \cdot n$</td>
<td>$1.05 \cdot 10^9$</td>
<td>15.26 milliseconds</td>
</tr>
<tr>
<td>$1.4656^k \cdot n$</td>
<td>$2.10 \cdot 10^6$</td>
<td>0.31 milliseconds</td>
</tr>
<tr>
<td>$1.2738^k + k \cdot n$</td>
<td>$2.02 \cdot 10^4$</td>
<td>0.0003 milliseconds</td>
</tr>
</tbody>
</table>

Notes:
– We assume that 2^{36} instructions are carried out per second.
– The Big Bang happened roughly $13.5 \cdot 10^9$ years ago.
Goal of Parameterized Complexity

Confine the combinatorial explosion to a parameter k.

(1) Which problem–parameter combinations are fixed-parameter tractable (FPT)? In other words, for which problem–parameter combinations are there algorithms with running times of the form

$$f(k) \cdot n^{O(1)},$$

where the f is a computable function independent of the input size n?

(2) How small can we make the $f(k)$?
Examples of Parameters

A Parameterized Problem

Input: an instance of the problem
Parameter: a parameter
Question: a Yes–No question about the instance and the parameter

A parameter can be

- solution size
- input size (trivial parameterization)
- related to the structure of the input (maximum degree, treewidth, branchwidth, genus, ...)
- combinations of parameters
- etc.
Outline

1 Introduction
 - Vertex Cover
 - Coloring
 - Clique
 - Δ-Clique

2 Basic Definitions

3 Further Reading
A k-coloring of a graph $G = (V, E)$ is a function $f : V \rightarrow \{1, 2, ..., k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

COLORING

Input: Graph G, integer k
Parameter: k
Question: Does G have a k-coloring?

Brute-force: $O^*(k^n)$, where $n = |V(G)|$.
Inclusion-Exclusion: $O^*(2^n)$.
FPT?
Known: \textsc{Coloring} is \textbf{NP}-complete when $k = 3$

Suppose there was a $O^*(f(k))$-time algorithm for \textsc{Coloring}

- Then, 3-\textsc{Coloring} can be solved in $O^*(f(3)) \leq O^*(1)$ time
- Therefore, $P = \text{NP}$

Therefore, \textsc{Coloring} is not \textbf{FPT} unless $P = \text{NP}$
Outline

1. Introduction
 - Vertex Cover
 - Coloring
 - Clique
 - \(\Delta \)-Clique

2. Basic Definitions

3. Further Reading
A **clique** in a graph $G = (V, E)$ is a subset of its vertices $S \subseteq V$ such that every two vertices from S are adjacent in G.

CLIQUE

Input: Graph $G = (V, E)$, integer k
Parameter: k
Question: Does G have a clique of size k?

Is **CLIQUE** NP-complete when k is a fixed constant? Is it FPT?
Algorithm for Clique

For each subset $S \subseteq V$ of size k, check whether all vertices of S are adjacent

- Running time: $O^* \left(\binom{n}{k} \right) \subseteq O^* \left(n^k \right)$
- When $k \in O(1)$, this is polynomial
- But: we do not currently know an FPT algorithm for Clique
- Since Clique is W[1]-hard, we believe it is not FPT. (See lecture on W-hardness.)
Outline

1 Introduction
 - Vertex Cover
 - Coloring
 - Clique
 - Δ-Clique

2 Basic Definitions

3 Further Reading
A different parameter for Clique

\[\Delta\text{-Clique} \]

Input: Graph \(G = (V, E) \), integer \(k \)

Parameter: \(\Delta(G) \), i.e., the maximum degree of \(G \)

Question: Does \(G \) have a clique of size \(k \)?

Is \(\Delta\text{-Clique} \) FPT?
Algorithm for Δ-Clique

- If $k = 0$, answer YES.
- If $k > \Delta + 1$, answer NO.
- Otherwise,
 - // A clique of size k contains at least one vertex v. We try all possibilities for v.

Running time: $O^{\ast}((\Delta + 1)^k) \subseteq O^{\ast}((\Delta + 1)^{\Delta})$. (FPT for parameter Δ)

S. Gaspers (UNSW)
Basics of PC
Semester 2, 2015
Algorithm for Δ-Clique

- If $k = 0$, answer Yes.
- If $k > \Delta + 1$, answer No.
- Otherwise,
 - // A clique of size k contains at least one vertex v. We try all possibilities for v.
 - // For each $v \in V$, we will check whether G has a clique of size k containing v.
 - // Note that for a clique S containing v, we have $S \subseteq N_G[v]$.
 - For each $v \in V$, check for each vertex subset $S \subseteq N_G[v]$ of size k whether S is a clique in G.

Running time: $O^*((\Delta + 1)^k) \subseteq O^*((\Delta + 1)^\Delta)$ (FPT for parameter Δ)
Algorithm for Δ-Clique

- If $k = 0$, answer **Yes**.
- If $k > \Delta + 1$, answer **No**.
- Otherwise,
 - // A clique of size k contains at least one vertex v. We try all possibilities for v.
 - // For each $v \in V$, we will check whether G has a clique of size k containing v.
 - // Note that for a clique S containing v, we have $S \subseteq N_G[v]$.
 - For each $v \in V$, check for each vertex subset $S \subseteq N_G[v]$ of size k whether S is a clique in G.

- Running time: $O^*((\Delta + 1)^k) \subseteq O^*((\Delta + 1)^{\Delta})$. (**FPT** for parameter Δ)
Outline

1 Introduction
 • Vertex Cover
 • Coloring
 • Clique
 • \(\Delta \)-Clique

2 Basic Definitions

3 Further Reading
Main Parameterized Complexity Classes

\(n \): instance size
\(k \): parameter

\(P \): class of problems that can be solved in \(n^{O(1)} \) time
\(\text{FPT} \): class of parameterized problems that can be solved in \(f(k) \cdot n^{O(1)} \) time
\(W[\cdot] \): parameterized intractability classes
\(\text{XP} \): class of parameterized problems that can be solved in \(f(k) \cdot n^{g(k)} \) time
 (“polynomial when \(k \) is a constant”)

\[
P \subseteq \text{FPT} \subseteq W[1] \subseteq W[2] \cdots \subseteq W[P] \subseteq \text{XP}
\]

\textbf{Known:} If \(\text{FPT} = W[1] \), then the Exponential Time Hypothesis fails, i.e. 3-\text{SAT} can be solved in \(2^{o(n)} \) time, where \(n \) is the number of variables.

\textbf{Note:} We assume that \(f \) is \textit{computable} and \textit{non-decreasing}.
Outline

1 Introduction
 - Vertex Cover
 - Coloring
 - Clique
 - Δ-Clique

2 Basic Definitions

3 Further Reading
Further Reading

