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Definition: Boolean Algebra
A Boolean algebra is a structure (T ,∨,∧,′ , 0, 1) where

0, 1 ∈ T

∨ : T × T → T (called join)

∧ : T × T → T (called meet)
′ : T → T (called complementation)

and the following laws hold for all x , y , z ∈ T :

commutative: x ∨ y = y ∨ x
x ∧ y = y ∧ x

associative: (x ∨ y) ∨ z = x ∨ (y ∨ z)
(x ∧ y) ∧ z = x ∧ (y ∧ z)

distributive: x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

identity: x ∨ 0 = x , x ∧ 1 = x

complementation: x ∨ x ′ = 1, x ∧ x ′ = 0
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Examples of Boolean Algebras

The set of subsets of a set X :

T : Pow(X )

∧ : ∩
∨ : ∪
′ : c

0 : ∅
1 : X

Laws of Boolean algebra follow from Laws of Set Operations.

4



Examples of Boolean Algebras

The two element Boolean Algebra :

B = ({true, false},&&, ‖, !, false, true)

where !,&&, ‖ are defined as:

!true = false; !false = true,

true && true = true; ...

true ‖ true = true; ...

NB

We will often use B for the two element set {true, false}. For
simplicity this may also be abbreviated as {T ,F} or {1, 0}.
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Examples of Boolean Algebras

Cartesian products of B
Functions from a set S to B
Examples in tutorial (sets of natural numbers)
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Derived laws

The following are all derivable from the Boolean Algebra laws.
Idempotence x ∧ x = x

x ∨ x = x
Double complementation (x ′)′ = x

Annihilation x ∧ 0 = 0
x ∨ 1 = 1

de Morgan’s Laws (x ∧ y)′ = x ′ ∨ y ′

(x ∨ y)′ = x ′ ∧ y ′
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Duality

If E is an expression made up with ∧,∨,′ , 0, 1 and variables; then
dual(E ) is the expression obtained by replacing ∧ with ∨ and
vice-versa; and 0 with 1 and vice-versa.

Theorem (Principle of Duality)

If you can show E1 = E2 holds in all Boolean Algebrasa, then
dual(E1) = dual(E2) holds in all Boolean Algebras.

aby using the Boolean Algebra Laws
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Duality formally

A Boolean Algebra expression is defined as follows:

0, 1 are expressions

A variable, x , y , . . . , is an expression.

If E is an expression then E ′ is an expression.

If E1 and E2 are expressions, then (E1 ∧ E2) and (E1 ∨ E2) are
expressions.
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Duality formally

If Exp is the set of expressions, we define dual : Exp→ Exp as
follows:

dual(0) = 1, dual(1) = 0

dual(x) = x for all variables x

dual(E ′) = dual(E )′ for all expressions E

dual((E1 ∧ E2)) = (dual(E1) ∨ dual(E2)) for all expressions E1

and E2

dual((E1 ∨ E2)) = (dual(E1) ∧ dual(E2)) for all expressions E1

and E2
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Duality example

dual((x ∨ (x ∧ y))) = (dual(x) ∧ dual((x ∧ y)))
= (x ∧ dual((x ∧ y)))
= (x ∧ (dual(x) ∨ dual(y)))
= (x ∧ (x ∨ y))
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Valuations

A truth assignment (or model) is a function v : Prop→ B

We can extend v to a function [[·]]v : WFFs→ B recursively:

[[>]]v = true, [[⊥]]v = false

[[p]]v = v(p)

[[¬ϕ]]v = ![[ϕ]]v
[[(ϕ ∧ ψ)]]v = [[ϕ]]v && [[ψ]]v
[[(ϕ ∨ ψ)]]v = [[ϕ]]v ‖ [[ψ]]v
[[(ϕ→ ψ)]]v = ![[ϕ]]v ‖ [[ψ]]v
[[(ϕ↔ ψ)]]v = (![[ϕ]]v ‖ [[ψ]]v ) && (![[ψ]]v ‖ [[ϕ]]v )
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Satisfiability, Validity and Equivalence

A formula ϕ is

satisfiable if [[ϕ]]v = true for some model v (v satisfies ϕ)

valid or a tautology if [[ϕ]]v = true for all models v

unsatisfiable or a contradiction if [[ϕ]]v = false for all
models v
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Logical equivalence

Two formulas, ϕ and ψ, are logically equivalent, ϕ ≡ ψ, if
[[ϕ]]v = [[ψ]]v for all models v .

Theorem

≡ is an equivalence relation.

Example

Commutativity: (p ∨ q) ≡ (q ∨ p)

Double negation: ¬¬p ≡ p

Contrapositive: (p → q) ≡ (¬q → ¬p)

De Morgan’s: (p ∨ q)′ ≡ p′ ∧ q′

Theorem

ϕ ≡ ψ if, and only if, (ϕ↔ ψ) is a tautology.
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Theories and entailment

A set of formulas is a theory

A model v satisfies a theory T if [[ϕ]]v = true for all ϕ ∈ T

A theory T entails a formula ϕ, T |= ϕ, if [[ϕ]]v = true for all
models v which satisfy T

Example

T1 = {p}, T2 = ∅, T3 = {⊥}
v : p −→ true satisfies T1 and T2 but not T3

T1 |= (p ∨ p) and T3 |= (p ∨ p) but T2 does not model (p ∨ p)
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Theories and entailment

A set of formulas is a theory

A model v satisfies a theory T if [[ϕ]]v = true for all ϕ ∈ T

A theory T entails a formula ϕ, T |= ϕ, if [[ϕ]]v = true for all
models v which satisfy T

Theorem

The following are equivalent:

ϕ1, ϕ2, . . . , ϕn |= ψ

∅ |= ((ϕ1 ∧ ϕ2) ∧ . . . ϕn)→ ψ

((ϕ1 ∧ ϕ2) ∧ . . . ϕn)→ ψ is a tautology

∅ |= ϕ1 → (ϕ2 → (. . .→ ϕn)→ ψ)) . . .)
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Terminology and Rules

For readability we assume associativity of ∧ and ∨, and write
ϕ for ¬ϕ.

A literal is an expression p or p, where p is a propositional
atom.

A propositional formula is in CNF (conjunctive normal form)
if it has the form ∧

i

Ci

where each clause Ci is a disjunction of literals e.g. p ∨ q ∨ r .

A propositional formula is in DNF (disjunctive normal form) if
it has the form ∨

i

Ci

where each clause Ci is a conjunction of literals e.g. p ∧ q ∧ r .
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Motivation

Finding satisfying assignments of formulas in DNF is
straightforward

Disproving validity of formulas in CNF is straightforward

Karnaugh maps can be used to simplify formulas
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CNF and DNF are named after their top level operators; no
deeper nesting of ∧ or ∨ is permitted.

We can assume in every clause (disjunct for the CNF,
conjunct for the DNF) any given variable (literal) appears only
once; preferably, no literal and its negation together.

x ∨ x = x , x ∧ x = x
x ∧ x = 0, x ∨ x = 1
x ∧ 0 = 0, x ∧ 1 = x , x ∨ 0 = x , x ∨ 1 = 1

A preferred form for an expression is DNF, with as few terms
as possible. In deriving such minimal simplifications the two
basic rules are absorption and combining the opposites.

Fact

1 Absorption: x ∨ (x ∧ y) ≡ x

2 Combining the opposites: (x ∧ y) ∨ (x ∧ y) ≡ x
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Theorem

For every Boolean expression φ, there exists an equivalent
expression in conjunctive normal form and an equivalent expression
in disjunctive normal form.

Proof.

We show how to apply the equivalences already introduced to
convert any given formula to an equivalent one in CNF, DNF is
similar.
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Step 1: Push Negations Down

Using De Morgan’s laws and the double negation rule

x ∨ y ≡ x ∧ y

x ∧ y ≡ x ∨ y

x ≡ x

we push negations down towards the atoms until we obtain a
formula that is formed from literals using only ∧ and ∨.
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Step 2: Use Distribution to Convert to CNF

Using the distribution rules

x ∨ (y1 ∧ . . . ∧ yn) = (x ∨ y1) ∧ . . . ∧ (x ∨ yn)

(y1 ∧ . . . ∧ yn) ∨ x = (y1 ∨ x) ∧ . . . ∧ (yn ∨ x)

we obtain a CNF formula.
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CNF/DNF in Propositional Logic

Using the equivalence

A→ B ≡ ¬A ∨ B

we first eliminate all occurrences of →
Example

¬(¬p ∧ ((r ∧ s)→ q)) ≡ ¬(¬p ∧ (¬(r ∧ s) ∨ q))
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Step 1:

Example

p(rs ∨ q) = p ∨ rs ∨ q

= p ∨ rs ∧ q

= p ∨ rsq

Step 2:

Example

p ∨ rsq = (p ∨ r)(p ∨ sq)

= (p ∨ r)(p ∨ s)(p ∨ q) CNF
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Canonical Form DNF
Given a Boolean expression E , we can construct an equivalent
DNF Ednf from the lines of the truth table where E is true:
Given an assignment v from {x1 . . . xi} to B, define the literal

`i =

{
xi if v(xi ) = true

xi if v(xi ) = false

and a product tv = `1 ∧ `2 ∧ . . . ∧ `n.

Example

If v(x1) = true and v(x2) = false then tv = x1 ∧ x2

The canonical DNF of E is

Ednf =
∨

[[E ]]v=true

tv
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Example

If E is defined by
x y E

F F T
F T F
T F T
T T T

then Ednf = (x ∧ y) ∨ (x ∧ y) ∨ (x ∧ y)
Note that this can be simplified to either

y ∨ (x ∧ y)

or
(x ∧ y) ∨ x
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Canonical CNF

After pushing negations down, the negation of a DNF is a CNF
(and vice versa).

⇒ Given an expression E , we can obtain an equivalent CNF by
finding a DNF for ¬E and then applying De Morgan’s laws.

⇔ Look at rows in the truth table of E that contain false and
negate the literals.

41



Example

If E is defined by
x y E

F F F
F T F
T F T
T T F

then E cnf = (x ∨ y) ∧ (x ∨ y) ∧ (x + y).
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Karnaugh Maps

For up to four variables (propositional symbols) a diagrammatic
method of simplification called Karnaugh maps works quite well.
For every propositional function of k = 2, 3, 4 variables we
construct a rectangular array of 2k cells. We mark the squares
corresponding to the value true with eg “+” and try to cover
these squares with as few rectangles with sides 1 or 2 or 4 as
possible.

Example

yz y z̄ ȳ z̄ ȳ z

x + + +
x̄ + + +
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For optimisation, the idea is to cover the + squares with the
minimum number of rectangles. One cannot cover any empty cells.

The rectangles can go ‘around the corner’/the actual map
should be seen as a torus.
Rectangles must have sides of 1, 2 or 4 squares (three
adjacent cells are useless).

Example

yz y z̄ ȳ z̄ ȳ z

x + + +
x̄ + + +

�
 �	�
 �	
�
�

�
�

E = (x ∧ y) ∨ (x̄ ∧ ȳ) ∨ z

Canonical form would consist of writing all cells separately (6
clauses).
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Motivation

Given a theory T and a formula ϕ, how do we show T |= ϕ?

Consider all valuations v (SEMANTIC approach)

Use a sequence of equivalences and deductive rules to show
that ϕ is a logical consequence of T (SYTACTIC approach)
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Formal proofs

A formal way to show that a formula logically follows from a
theory.

Highly disciplined way of reasoning (good for computers)

A sequence of formulas where each step is a deduction based
on earlier steps

Based entirely on rewriting formulas – no semantic
interpretations needed
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