COMP2111 Week 3 Term 1, 2019
 Propositional Logic II

Summary of topics

- Well-formed formulas
- Boolean Algebras
- Valuations
- CNF/DNF
- Proof
- Natural deduction

Definition: Boolean Algebra

A Boolean algebra is a structure $\left(T, \vee, \wedge,{ }^{\prime}, 0,1\right)$ where

- $0,1 \in T$
- $\vee: T \times T \rightarrow T$ (called join)
- $\wedge: T \times T \rightarrow T$ (called meet)
${ }^{\prime}$ ' $: T \rightarrow T$ (called complementation)
and the following laws hold for all $x, y, z \in T$:
commutative: $\bullet x \vee y=y \vee x$
- $x \wedge y=y \wedge x$
associative: $\quad \bullet(x \vee y) \vee z=x \vee(y \vee z)$
- $(x \wedge y) \wedge z=x \wedge(y \wedge z)$
distributive:
- $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$
- $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
identity: $x \vee 0=x, \quad x \wedge 1=x$
complementation: $x \vee x^{\prime}=1, \quad x \wedge x^{\prime}=0$

Examples of Boolean Algebras

The set of subsets of a set X :

- $T: \operatorname{Pow}(X)$
- \wedge : \cap
- $\vee: \cup$
$\bullet^{\prime}:{ }^{c}$
- 0: \emptyset
- 1: X

Laws of Boolean algebra follow from Laws of Set Operations.

Examples of Boolean Algebras

The two element Boolean Algebra :

$$
\mathbb{B}=(\{\text { true }, \text { false }\}, \& \&, \|,!, \text { false }, \text { true })
$$

where ! , \&\&, $\|$ are defined as:

- !true = false; !false = true,
- true \&\& true $=$ true;..
- true $\|$ true $=$ true;..

NB

We will often use \mathbb{B} for the two element set $\{$ true, false $\}$. For simplicity this may also be abbreviated as $\{T, F\}$ or $\{1,0\}$.

Examples of Boolean Algebras

- Cartesian products of \mathbb{B}
- Functions from a set S to \mathbb{B}
- Examples in tutorial (sets of natural numbers)

Derived laws

The following are all derivable from the Boolean Algebra laws. Idempotence

$$
x \wedge x=x
$$

$$
x \vee x=x
$$

Double complementation
de Morgan's Laws

$$
\begin{gathered}
\left(x^{\prime}\right)^{\prime}=x \\
x \wedge 0=0 \\
x \vee 1=1 \\
(x \wedge y)^{\prime}=x^{\prime} \vee y^{\prime} \\
(x \vee y)^{\prime}=x^{\prime} \wedge y^{\prime}
\end{gathered}
$$

Duality

If E is an expression made up with $\wedge, \vee^{\prime}, 0,1$ and variables; then dual (E) is the expression obtained by replacing \wedge with \vee and vice-versa; and 0 with 1 and vice-versa.

Theorem (Principle of Duality)

If you can show $E_{1}=E_{2}$ holds in all Boolean Algebras ${ }^{a}$, then dual $\left(E_{1}\right)=$ dual $\left(E_{2}\right)$ holds in all Boolean Algebras.

[^0]
Duality formally

A Boolean Algebra expression is defined as follows:

- 0, 1 are expressions
- A variable, x, y, \ldots, is an expression.
- If E is an expression then E^{\prime} is an expression.
- If E_{1} and E_{2} are expressions, then $\left(E_{1} \wedge E_{2}\right)$ and $\left(E_{1} \vee E_{2}\right)$ are expressions.

Duality formally

If Exp is the set of expressions, we define dual : Exp \rightarrow EXP as follows:

- dual $(0)=1, \operatorname{dual}(1)=0$
- dual $(x)=x$ for all variables x
- dual $\left(E^{\prime}\right)=\operatorname{dual}(E)^{\prime}$ for all expressions E
- dual $\left(\left(E_{1} \wedge E_{2}\right)\right)=\left(\operatorname{dual}\left(E_{1}\right) \vee\right.$ dual $\left.\left(E_{2}\right)\right)$ for all expressions E_{1} and E_{2}
- dual $\left(\left(E_{1} \vee E_{2}\right)\right)=\left(\operatorname{dual}\left(E_{1}\right) \wedge \operatorname{dual}\left(E_{2}\right)\right)$ for all expressions E_{1} and E_{2}

Duality example

$$
\operatorname{dual}((x \vee(x \wedge y)))=(\operatorname{dual}(x) \wedge \operatorname{dual}((x \wedge y)))
$$

Duality example

$$
\begin{aligned}
\operatorname{dual}((x \vee(x \wedge y))) & =(\operatorname{dual}(x) \wedge \operatorname{dual}((x \wedge y))) \\
& =(x \wedge \operatorname{dual}((x \wedge y)))
\end{aligned}
$$

Duality example

$$
\begin{aligned}
\operatorname{dual}((x \vee(x \wedge y))) & =(\operatorname{dual}(x) \wedge \operatorname{dual}((x \wedge y))) \\
& =(x \wedge \operatorname{dual}((x \wedge y))) \\
& =(x \wedge(\operatorname{dual}(x) \vee \operatorname{dual}(y)))
\end{aligned}
$$

Duality example

$$
\begin{aligned}
\operatorname{dual}((x \vee(x \wedge y))) & =(\operatorname{dual}(x) \wedge \operatorname{dual}((x \wedge y))) \\
& =(x \wedge \operatorname{dual}((x \wedge y))) \\
& =(x \wedge(\operatorname{dual}(x) \vee \operatorname{dual}(y))) \\
& =(x \wedge(x \vee y))
\end{aligned}
$$

Summary of topics

- Well-formed formulas
- Boolean Algebras
- Valuations
- CNF/DNF
- Proof
- Natural deduction

Valuations

A truth assignment (or model) is a function $v: \operatorname{PrOP} \rightarrow \mathbb{B}$
We can extend v to a function $\llbracket \cdot \rrbracket_{v}:$ WFFs $\rightarrow \mathbb{B}$ recursively:

Valuations

A truth assignment (or model) is a function $v: \operatorname{PrOP} \rightarrow \mathbb{B}$
We can extend v to a function $\llbracket \cdot \rrbracket_{v}:$ WFFs $\rightarrow \mathbb{B}$ recursively:

- $\llbracket \top \rrbracket_{v}=$ true, $\llbracket \perp \rrbracket_{v}=$ false

Valuations

A truth assignment (or model) is a function $v: \operatorname{PrOP} \rightarrow \mathbb{B}$
We can extend v to a function $\llbracket \rrbracket_{v}:$ WFFs $\rightarrow \mathbb{B}$ recursively:

- $\llbracket\rceil \rrbracket_{v}=$ true, $\llbracket \perp \rrbracket_{v}=$ false
- $\llbracket p \rrbracket_{v}=v(p)$

Valuations

A truth assignment (or model) is a function $v: \operatorname{PrOP} \rightarrow \mathbb{B}$
We can extend v to a function $\llbracket \rrbracket_{v}:$ WFFs $\rightarrow \mathbb{B}$ recursively:

- $\llbracket \top \rrbracket_{v}=$ true, $\llbracket \perp \rrbracket_{v}=$ false
- $\llbracket p \rrbracket_{v}=v(p)$
- $\llbracket \neg \varphi \rrbracket_{v}=!\llbracket \varphi \rrbracket_{V}$

Valuations

A truth assignment (or model) is a function $v: \operatorname{PrOP} \rightarrow \mathbb{B}$
We can extend v to a function $\llbracket \rrbracket_{v}:$ WFFs $\rightarrow \mathbb{B}$ recursively:

- $\llbracket \top \rrbracket_{v}=$ true, $\llbracket \perp \rrbracket_{v}=$ false
- $\llbracket p \rrbracket_{v}=v(p)$
- $\llbracket \neg \varphi \rrbracket_{v}=!\llbracket \varphi \rrbracket_{v}$
- $\llbracket(\varphi \wedge \psi) \rrbracket_{v}=\llbracket \varphi \rrbracket_{v} \& \& \llbracket \psi \rrbracket_{v}$

Valuations

A truth assignment (or model) is a function $v: \operatorname{PrOP} \rightarrow \mathbb{B}$
We can extend v to a function $\llbracket \rrbracket_{v}:$ WFFs $\rightarrow \mathbb{B}$ recursively:

- $\llbracket \top \rrbracket_{v}=$ true, $\llbracket \perp \rrbracket_{v}=$ false
- $\llbracket p \rrbracket_{v}=v(p)$
- $\llbracket \neg \varphi \rrbracket_{v}=!\llbracket \varphi \rrbracket_{v}$
- $\llbracket(\varphi \wedge \psi) \rrbracket_{v}=\llbracket \varphi \rrbracket_{v} \& \& \llbracket \psi \rrbracket_{v}$
- $\llbracket(\varphi \vee \psi) \rrbracket_{v}=\llbracket \varphi \rrbracket_{v} \| \llbracket \psi \rrbracket_{v}$

Valuations

A truth assignment (or model) is a function $v: \operatorname{PrOP} \rightarrow \mathbb{B}$ We can extend v to a function $\llbracket \rrbracket_{v}:$ WFFs $\rightarrow \mathbb{B}$ recursively:

- $\llbracket \top \rrbracket_{v}=$ true, $\llbracket \perp \rrbracket_{v}=$ false
- $\llbracket p \rrbracket_{v}=v(p)$
- $\llbracket \neg \varphi \rrbracket_{v}=!\llbracket \varphi \rrbracket_{v}$
- $\llbracket(\varphi \wedge \psi) \rrbracket_{v}=\llbracket \varphi \rrbracket_{v} \& \& \llbracket \psi \rrbracket_{v}$
- $\llbracket(\varphi \vee \psi) \rrbracket_{v}=\llbracket \varphi \rrbracket_{v} \| \llbracket \psi \rrbracket_{v}$
- $\llbracket(\varphi \rightarrow \psi) \rrbracket_{v}=!\llbracket \varphi \rrbracket_{v} \| \llbracket \psi \rrbracket_{v}$

Valuations

A truth assignment (or model) is a function $v: \operatorname{PrOP} \rightarrow \mathbb{B}$
We can extend v to a function $\llbracket \rrbracket_{v}:$ WFFs $\rightarrow \mathbb{B}$ recursively:

- $\llbracket \top \rrbracket_{v}=$ true, $\llbracket \perp \rrbracket_{v}=$ false
- $\llbracket p \rrbracket_{v}=v(p)$
- $\llbracket \neg \varphi \rrbracket_{v}=!\llbracket \varphi \rrbracket_{v}$
- $\llbracket(\varphi \wedge \psi) \rrbracket_{v}=\llbracket \varphi \rrbracket_{v} \& \& \llbracket \psi \rrbracket_{v}$
- $\llbracket(\varphi \vee \psi) \rrbracket_{v}=\llbracket \varphi \rrbracket_{v} \| \llbracket \psi \rrbracket_{v}$
- $\llbracket(\varphi \rightarrow \psi) \rrbracket_{v}=!\llbracket \varphi \rrbracket_{v} \| \llbracket \psi \rrbracket_{v}$
- $\llbracket(\varphi \leftrightarrow \psi) \rrbracket_{v}=\left(!\llbracket \varphi \rrbracket_{v} \| \llbracket \psi \rrbracket_{v}\right) \& \&\left(!\llbracket \psi \rrbracket_{v} \| \llbracket \varphi \rrbracket_{v}\right)$

Satisfiability, Validity and Equivalence

A formula φ is

- satisfiable if $\llbracket \varphi \rrbracket_{v}=$ true for some model $v(v$ satisfies $\varphi)$
- valid or a tautology if $\llbracket \varphi \rrbracket_{v}=$ true for all models v
- unsatisfiable or a contradiction if $\llbracket \varphi \rrbracket_{v}=f$ alse for all models v

Logical equivalence

Two formulas, φ and ψ, are logically equivalent, $\varphi \equiv \psi$, if $\llbracket \varphi \rrbracket_{v}=\llbracket \psi \rrbracket_{v}$ for all models v.

Theorem

\equiv is an equivalence relation.

Logical equivalence

Two formulas, φ and ψ, are logically equivalent, $\varphi \equiv \psi$, if $\llbracket \varphi \rrbracket_{v}=\llbracket \psi \rrbracket_{v}$ for all models v.

Theorem

\equiv is an equivalence relation.

Example

- Commutativity: $(p \vee q) \equiv(q \vee p)$
- Double negation: $\neg \neg p \equiv p$
- Contrapositive: $(p \rightarrow q) \equiv(\neg q \rightarrow \neg p)$
- De Morgan's: $(p \vee q)^{\prime} \equiv p^{\prime} \wedge q^{\prime}$

Logical equivalence

Two formulas, φ and ψ, are logically equivalent, $\varphi \equiv \psi$, if $\llbracket \varphi \rrbracket_{v}=\llbracket \psi \rrbracket_{v}$ for all models v.

Theorem

\equiv is an equivalence relation.

Example

- Commutativity: $(p \vee q) \equiv(q \vee p)$
- Double negation: $\neg \neg p \equiv p$
- Contrapositive: $(p \rightarrow q) \equiv(\neg q \rightarrow \neg p)$
- De Morgan's: $(p \vee q)^{\prime} \equiv p^{\prime} \wedge q^{\prime}$

Theorem

$\varphi \equiv \psi$ if, and only if, $(\varphi \leftrightarrow \psi)$ is a tautology.

Theories and entailment

A set of formulas is a theory
A model v satisfies a theory T if $\llbracket \varphi \rrbracket_{v}=$ true for all $\varphi \in T$
A theory T entails a formula $\varphi, T \models \varphi$, if $\llbracket \varphi \rrbracket_{v}=$ true for all models v which satisfy T

Example

- $T_{1}=\{p\}, T_{2}=\emptyset, T_{3}=\{\perp\}$
- $v: p \longrightarrow$ true satisfies T_{1} and T_{2} but not T_{3}
- $T_{1} \models(p \vee p)$ and $T_{3} \models(p \vee p)$ but T_{2} does not model $(p \vee p)$

Theories and entailment

A set of formulas is a theory
A model v satisfies a theory T if $\llbracket \varphi \rrbracket_{v}=$ true for all $\varphi \in T$
A theory T entails a formula $\varphi, T \models \varphi$, if $\llbracket \varphi \rrbracket_{v}=$ true for all models v which satisfy T

Theorem

The following are equivalent:

- $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$
- $\emptyset \vDash\left(\left(\varphi_{1} \wedge \varphi_{2}\right) \wedge \ldots \varphi_{n}\right) \rightarrow \psi$
- $\left(\left(\varphi_{1} \wedge \varphi_{2}\right) \wedge \ldots \varphi_{n}\right) \rightarrow \psi$ is a tautology
- $\left.\left.\emptyset \models \varphi_{1} \rightarrow\left(\varphi_{2} \rightarrow\left(\ldots \rightarrow \varphi_{n}\right) \rightarrow \psi\right)\right) \ldots\right)$

Summary of topics

- Well-formed formulas
- Boolean Algebras
- Valuations
- CNF/DNF
- Proof
- Natural deduction

Terminology and Rules

- For readability we assume associativity of \wedge and \vee, and write $\bar{\varphi}$ for $\neg \varphi$.
- A literal is an expression p or \bar{p}, where p is a propositional atom.
- A propositional formula is in CNF (conjunctive normal form) if it has the form

$$
\bigwedge_{i} C_{i}
$$

where each clause C_{i} is a disjunction of literals e.g. $p \vee q \vee \bar{r}$.

- A propositional formula is in DNF (disjunctive normal form) if it has the form

$$
\bigvee_{i} C_{i}
$$

where each clause C_{i} is a conjunction of literals e.g. $p \wedge q \wedge \bar{r}$.

Motivation

- Finding satisfying assignments of formulas in DNF is straightforward
- Disproving validity of formulas in CNF is straightforward
- Karnaugh maps can be used to simplify formulas
- CNF and DNF are named after their top level operators; no deeper nesting of \wedge or \vee is permitted.
- We can assume in every clause (disjunct for the CNF, conjunct for the DNF) any given variable (literal) appears only once; preferably, no literal and its negation together.
- $x \vee x=x, x \wedge x=x$
- $x \wedge \bar{x}=0, \quad x \vee \bar{x}=1$
- $x \wedge 0=0, x \wedge 1=x, x \vee 0=x, x \vee 1=1$
- A preferred form for an expression is DNF, with as few terms as possible. In deriving such minimal simplifications the two basic rules are absorption and combining the opposites.

Fact

(1) Absorption: $x \vee(x \wedge y) \equiv x$
(2) Combining the opposites: $(x \wedge y) \vee(x \wedge \bar{y}) \equiv x$

Theorem

For every Boolean expression ϕ, there exists an equivalent expression in conjunctive normal form and an equivalent expression in disjunctive normal form.

Proof.

We show how to apply the equivalences already introduced to convert any given formula to an equivalent one in CNF, DNF is similar.

Step 1: Push Negations Down

Using De Morgan's laws and the double negation rule

$$
\begin{aligned}
\overline{x \vee y} & \equiv \bar{x} \wedge \bar{y} \\
\overline{x \wedge y} & \equiv \bar{x} \vee \bar{y} \\
\bar{x} & \equiv x
\end{aligned}
$$

we push negations down towards the atoms until we obtain a formula that is formed from literals using only \wedge and \vee.

Step 2: Use Distribution to Convert to CNF

Using the distribution rules

$$
\begin{aligned}
& x \vee\left(y_{1} \wedge \ldots \wedge y_{n}\right)=\left(x \vee y_{1}\right) \wedge \ldots \wedge\left(x \vee y_{n}\right) \\
& \left(y_{1} \wedge \ldots \wedge y_{n}\right) \vee x=\left(y_{1} \vee x\right) \wedge \ldots \wedge\left(y_{n} \vee x\right)
\end{aligned}
$$

we obtain a CNF formula.

CNF/DNF in Propositional Logic

Using the equivalence

$$
A \rightarrow B \equiv \neg A \vee B
$$

we first eliminate all occurrences of \rightarrow

Example

$$
\neg(\neg p \wedge((r \wedge s) \rightarrow q)) \equiv \neg(\neg p \wedge(\neg(r \wedge s) \vee q))
$$

Step 1:

Example

$$
\begin{aligned}
\overline{\bar{p}(\overline{r s} \vee q)} & =\overline{\bar{p}} \vee \overline{\overline{r s}} \vee q \\
& =p \vee \overline{\overline{r s}} \wedge \bar{q} \\
& =p \vee r s \bar{q}
\end{aligned}
$$

Step 2:

Example

$$
\begin{aligned}
p \vee r s \bar{q} & =(p \vee r)(p \vee s \bar{q}) \\
& =(p \vee r)(p \vee s)(p \vee \bar{q}) \quad \mathrm{CNF}
\end{aligned}
$$

Canonical Form DNF

Given a Boolean expression E, we can construct an equivalent DNF $E^{d n f}$ from the lines of the truth table where E is true:
Given an assignment v from $\left\{x_{1} \ldots x_{i}\right\}$ to \mathbb{B}, define the literal

$$
\ell_{i}= \begin{cases}x_{i} & \text { if } v\left(x_{i}\right)=\text { true } \\ \overline{x_{i}} & \text { if } v\left(x_{i}\right)=\text { false }\end{cases}
$$

and a product $t_{v}=\ell_{1} \wedge \ell_{2} \wedge \ldots \wedge \ell_{n}$.

Example

If $v\left(x_{1}\right)=$ true and $v\left(x_{2}\right)=$ false then $t_{v}=x_{1} \wedge \overline{x_{2}}$
The canonical DNF of E is

$$
E^{\mathrm{dnf}}=\bigvee_{\llbracket E \mathbb{1}_{v}=\text { true }} t_{\mathrm{v}}
$$

Example

If E is defined by

$$
\begin{array}{cc|c}
x & y & E \\
\hline F & F & T \\
F & T & F \\
T & F & T \\
T & T & T
\end{array}
$$

then $E^{d n f}=(\bar{x} \wedge \bar{y}) \vee(x \wedge \bar{y}) \vee(x \wedge y)$
Note that this can be simplified to either

$$
\bar{y} \vee(x \wedge y)
$$

or

$$
(\bar{x} \wedge \bar{y}) \vee x
$$

Canonical CNF

After pushing negations down, the negation of a DNF is a CNF (and vice versa).
$\Rightarrow \quad$ Given an expression E, we can obtain an equivalent CNF by finding a DNF for $\neg E$ and then applying De Morgan's laws.
$\Leftrightarrow \quad$ Look at rows in the truth table of E that contain false and negate the literals.

Example

If E is defined by

$$
\begin{array}{cc|c}
x & y & E \\
\hline F & F & F \\
F & T & F \\
T & F & T \\
T & T & F
\end{array}
$$

then $E^{c n f}=(x \vee y) \wedge(x \vee \bar{y}) \wedge(\bar{x}+\bar{y})$.

Karnaugh Maps

For up to four variables (propositional symbols) a diagrammatic method of simplification called Karnaugh maps works quite well. For every propositional function of $k=2,3,4$ variables we construct a rectangular array of 2^{k} cells. We mark the squares corresponding to the value true with eg " + " and try to cover these squares with as few rectangles with sides 1 or 2 or 4 as possible.

Example

For optimisation, the idea is to cover the + squares with the minimum number of rectangles. One cannot cover any empty cells.

- The rectangles can go 'around the corner'/the actual map should be seen as a torus.
- Rectangles must have sides of 1,2 or 4 squares (three adjacent cells are useless).

Example

For optimisation, the idea is to cover the + squares with the minimum number of rectangles. One cannot cover any empty cells.

- The rectangles can go 'around the corner'/the actual map should be seen as a torus.
- Rectangles must have sides of 1,2 or 4 squares (three adjacent cells are useless).

Example

$y z$	$y \bar{z}$	$\bar{y} \bar{z}$	$\bar{y} z$
	+	+	
	+		
	+	+	

$$
E=(x \wedge y) \vee(\bar{x} \wedge \bar{y}) \vee z
$$

Canonical form would consist of writing all cells separately (6

Summary of topics

- Well-formed formulas
- Boolean Algebras
- Valuations
- CNF/DNF
- Proof
- Natural deduction

Motivation

Given a theory T and a formula φ, how do we show $T \models \varphi$?

- Consider all valuations v (SEMANTIC approach)
- Use a sequence of equivalences and deductive rules to show that φ is a logical consequence of T (SYTACTIC approach)

Formal proofs

A formal way to show that a formula logically follows from a theory.

- Highly disciplined way of reasoning (good for computers)
- A sequence of formulas where each step is a deduction based on earlier steps
- Based entirely on rewriting formulas - no semantic interpretations needed

[^0]: ${ }^{a}$ by using the Boolean Algebra Laws

