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First-Order Logic

• First-order logic furnishes us with a much more expressive knowledge
representation language than propositional logic

• We can directly talk about objects, their properties, relations between them,
etc. . . .

• Here we discuss first-order logic and resolution
• However, there is a price to pay for this expressiveness in terms of decidability
• References:

◦ Ivan Bratko, Prolog Programming for Artificial Intelligence, Addison-Wesley,
2001. (Chapter 15)

◦ Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach,
Prentice-Hall International, 1995. (Chapter 6)
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Overview

• Syntax of First-Order Logic
• Semantics of First-Order Logic
• Conjunctive Normal Form
• Unification
• First-Order Resolution
• Soundness and Completeness
• Decidability
• Conclusion
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Syntax of First-Order Logic

• Constant Symbols: a, b, . . . , Mary (objects)
• Variables: x , y , . . .
• Function Symbols: f , mother of , sine, . . .
• Predicate Symbols: Mother , likes, . . .
• Quantifiers: ∀ (universal); ∃ (existential)

Terms: constant, variable, functions applied to terms (refer to objects)
• Atomic Sentences: predicate applied to terms (state facts)
• Ground (closed) term: a term with no variable symbols
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Syntax of First-Order Logic

Sentence ::= AtomicSentence ‖ Sentence Connective Sentence
‖ Quantifier Variable Sentence ‖ ¬ Sentence ‖ ( Sentence )

AtomicSentence ::= Predicate ( Term∗ )
Term ::= Function ( Term∗ ) ‖ Constant ‖ Variable
Connective ::=→ ‖ ∧ ‖ ∨ ‖ ↔
Quantifier ::= ∀ ‖ ∃
Constant ::= a ‖ John ‖ . . .
Variable ::= x ‖ men ‖ . . .
Predicate ::= P ‖ Red ‖ Between ‖ . . .
Function ::= f ‖ Father ‖ . . .
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Converting English into First-Order Logic

• Everyone likes lying on the beach — ∀x Beach(x)

• Someone likes Fido — ∃x Likes(x , Fido)

• No one likes Fido — ¬∃x Likes(x , Fido)

• Fido doesn’t like everyone — ¬∀x Likes(Fido, x)

• All cats are mammals — ∀x (Cat(x)→ Mammal(x))

• Some mammals are carnivorous — ∃x (Mammal(x) ∧ Carnivorous(x))
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Nested Quantifiers

Note that the order of quantification is very important
• Everything likes everything — ∀x ∀y Likes(x , y)

• Something likes something — ∃x ∃y Likes(x , y)

• Everything likes something — ∀x ∃y Likes(x , y)

• There is something liked by everything — ∃y ∀x Likes(x , y)
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Scope of Quantifiers

• The scope of a quantifier in a formula φ is that subformula ψ of φ of which that
quantifier is the main logical operator

• Variables belong to the innermost quantifier that mentions them
• Examples:

◦ Q(x)→ ∀y P(x , y) — scope of ∀y is P(x , y)
◦ ∀z P(z)→ ¬Q(z) — scope of ∀z is P(z) but not Q(z)
◦ ∃x(P(x)→ ∀x P(x))
◦ ∀x(P(x)→ Q(x))→ (∀x P(x)→ ∀x Q(x))

8



Terminology

• Free-variable occurrences in a formula —
◦ All variables in an atomic formula
◦ The free-variable occurrences in ¬φ are those in φ
◦ The free-variable occurrences in φ⊕ψ are those in φ and ψ for any connective ⊕
◦ The free-variable occurrences in ∀x Φ and ∃x Φ are those in Φ except for

occurrences of x

• Open formula — A formula in which free variables occur
• Closed formula — A formula with no free variables
• Closed formulae are also known as sentences
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Semantics of First-Order Logic

• A world in which a sentence is true under a particular interpretation is known
as a model of that sentence under the interpretation

• Constant symbols an interpretation specifies which object in the world a
constant refers to

Predicate symbols an interpretation specifies which relation in the model a
predicate refers to

Function symbols an interpretation specifies which function in the model a
function symbol refers to

Universal quantifier is true iff all all instances are true
Existential quantifier is true iff one instance is true
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Conversion into Conjunctive Normal Form

1. Eliminate implication
φ→ ψ ≡ ¬φ ∨ ψ

2. Move negation inwards (negation normal form)
¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ
¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ
¬ ∀x φ ≡ ∃x ¬φ
¬ ∃x φ ≡ ∀x ¬φ
¬¬φ ≡ φ

3. Standardise variables
(∀x P(x)) ∨ (∃x Q(x))
becomes (∀x P(x)) ∨ (∃y Q(y))
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Conversion into Conjunctive Normal Form

4. Skolemise
∃x P(x)⇒ P(a)
∀x∃y P(x , y)⇒ ∀x P(x , f (x))
∀x∀y∃z P(x , y , z)⇒ ∀x∀y P(x , y , f (x , y))

5. Drop universal quantifiers
6. Distribute ∧ over ∨

(φ ∧ ψ) ∨ χ ≡ (φ ∨ χ) ∧ (ψ ∨ χ)
7. Flatten nested conjunctions and disjunctions

(φ ∧ ψ) ∧ χ ≡ φ ∧ ψ ∧ χ; (φ ∨ ψ) ∨ χ ≡ φ ∨ ψ ∨ χ
(8. In proofs, rename variables in separate clauses — standardise apart)
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CNF — Example 1

∀x [(∀y P(x , y))→ ¬∀y(Q(x , y)→ R(x , y))]
1. ∀x [¬(∀y P(x , y)) ∨ ¬∀y(¬Q(x , y) ∨ R(x , y))]
2. ∀x [(∃y ¬P(x , y)) ∨ ∃y(Q(x , y) ∧ ¬R(x , y))]
3. ∀x [(∃y ¬P(x , y)) ∨ ∃z(Q(x , z) ∧ ¬R(x , z))]
4. ∀x [¬P(x , f (x)) ∨ (Q(x , g(x)) ∧ ¬R(x , g(x)))]
5. ¬P(x , f (x)) ∨ (Q(x , g(x)) ∧ ¬R(x , g(x)))
6. (¬P(x , f (x)) ∨Q(x , g(x))) ∧ (¬P(x , f (x)) ∨ ¬R(x , g(x)))
8. ¬P(x , f (x)) ∨Q(x , g(x))
¬P(y , f (y)) ∨ ¬R(y , g(y))
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CNF — Example 2

¬∃x∀y∀z((P(y) ∨Q(z))→ (P(x) ∨Q(x)))
¬∃x∀y∀z(¬(P(y) ∨Q(z)) ∨ (P(x) ∨Q(x))) [Eliminate→]
∀x¬∀y∀z(¬(P(y) ∨Q(z)) ∨ (P(x) ∨Q(x))) [Move ¬ inwards]
∀x∃y¬∀z(¬(P(y) ∨Q(z)) ∨ (P(x) ∨Q(x))) [Move ¬ inwards]
∀x∃y∃z¬(¬(P(y) ∨Q(z)) ∨ (P(x) ∨Q(x))) [Move ¬ inwards]
∀x∃y∃z(¬¬(P(y) ∨Q(z)) ∧ ¬(P(x) ∨Q(x))) [Move ¬ inwards]
∀x∃y∃z((P(y) ∨Q(z)) ∧ (¬P(x) ∧ ¬Q(x))) [Move ¬ inwards]
∀x((P(f (x)) ∨Q((g(x))) ∧ (¬P(x) ∧ ¬Q(x))) [Skolemise]
(P(f (x)) ∨Q((g(x))) ∧ ¬P(x) ∧ ¬Q(x) [Drop ∀]
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Unification

• Unification takes two atomic formulae and returns a substitution that makes
them look the same

• Example:
{x/a, y/z, w/f (b, c)}

• Note:
1. Each variable has at most one associated expression
2. No variable with an associated expression occurs within any associated

expression

• {x/g(y), y/f (x)} is not a substitution
• Substitution σ that makes a set of expressions identical known as a unifier
• Substitution σ1 is a more general unifier than a substitution σ2 if for some

substitution τ , σ2 = σ1τ .
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First-Order Resolution

• Generalised Resolution Rule:

For clauses χ ∨ Φ and ¬Ψ ∨ ζ

χ ∨ Φ ¬Ψ ∨ ζ

(χ ∨ ζ).θ

l
l
l
l
l
l
ll

,
,

,
,

,
,

,,

• Where θ is a unifier for atomic formulae Φ and Ψ

• χ ∨ ζ is known as the resolvent
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Resolution — Example 1

` ∃x(P(x)→ ∀xP(x))
CNF(¬∃x(P(x)→ ∀xP(x)))
∀x¬(¬P(x) ∨ ∀x P(x)) [Drive ¬ inwards]
∀x(¬¬P(x) ∧ ¬∀x P(x)) [Drive ¬ inwards]
∀x(P(x) ∧ ∃x ¬P(x)) [Drive ¬ inwards]
∀x(P(x) ∧ ∃z ¬P(z)) [Standardise Variables]
∀x(P(x) ∧ ¬P(f (x))) [Skolemise]
P(x) ∧ ¬P(f (x)) [Drop ∀]
1. P(x) [¬ Conclusion]
2. ¬P(f (y)) [¬ Conclusion]
3. P(f (y)) [1. {x/f (y)}]
4. � [2, 3. Resolution]
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Resolution — Example 2

1. P(f (x)) ∨Q(g(x)) [¬ Conclusion]
2. ¬P(y) [¬ Conclusion]
3. ¬Q(z) [¬ Conclusion]
4. P(f (a)) ∨Q(g(a)) [1. {x/a}]
5. ¬P(f (a)) [2. {y/f (a)}]
6. ¬Q(g(a)) [3. {z/g(a)}]
7. Q(g(a)) [4, 5. Resolution]
8. � [6, 7. Resolution]
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Resolution — Example 3

1. man(Marcus) [Premise]
2. Pompeian(Marcus) [Premise]
3. ¬Pompeian(x) ∨ Roman(x) [Premise]
4. ruler(Caesar) [Premise]
5. ¬Roman(y) ∨ loyaltyto(y , Caesar) ∨ hate(y , Caesar) [Premise]
6. loyaltyto(z, f (z)) [Premise]
7. ¬man(w) ∨ ¬ruler(u) ∨ ¬tryassassinate(w , u) ∨ ¬loyaltyto(w , u) [Premise]
8. tryassassinate(Marcus, Caesar) [Premise]
9. ¬hate(Marcus, Caesar) [¬ Conclusion]
10. ¬Roman(Marcus) ∨ loyaltyto(Marcus, Caesar) ∨ hate(Marcus, Caesar) [5.
{y/Marcus}]
11. ¬Roman(Marcus) ∨ loyaltyto(Marcus, Caesar) [9, 10. Resolution]
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Resolution — Example 3

12. ¬Pompeian(Marcus) ∨ Roman(Marcus) [3. {x/Marcus}]
13. loyaltyto(Marcus, Caesar) ∨ ¬Pompeian(Marcus) [11, 12. Resolution]
14. loyaltyto(Marcus, Caesar) [2, 13. Resolution]
15. ¬man(Marcus)∨ ¬ruler(Caesar)∨ ¬tryassassinate(Marcus, Caesar)∨
¬loyaltyto(Marcus, Caesar) [7. {w/Marcus, u/Caesar}]
16. ¬man(Marcus) ∨ ¬ruler(Caesar) ∨ ¬tryassassinate(Marcus, Caesar) [14,
15. Resolution]
17. ¬ruler(Caesar) ∨ ¬tryassassinate(Marcus, Caesar) [1, 16. Resolution]
18. ¬tryassassinate(Marcus, Caesar) [4, 17. Resolution]
19. � [8, 18. Resolution]
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Soundness and Completeness

• Resolution is
◦ sound (if λ ` ρ, then λ |= ρ)
◦ complete (if λ |= ρ, then λ ` ρ)

Decidability
• First-order logic is not decidable
• How would you prove this?
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Conclusion

• First-order logic allows us to speak about objects, properties of objects and
relationships between objects

• It also allows quantification over variables
• First-order logic is quite an expressive knowledge representation language;

much more so than propositional logic
• However, we do need to add things like equality if we wish to be able to do

things like counting
• We have also traded expressiveness for decidability
• How much of a problems is this?
• If we add (Peano) axioms for mathematics, then we encounter Gödel’s

famous incompleteness theorem (which is beyond the scope of this course)
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