

COMP4418: Knowledge Representation and Reasoning

First-Order Logic 1

Maurice Pagnucco School of Computer Science and Engineering

COMP4418, Week 2

First-Order Logic

- First-order logic furnishes us with a much more expressive knowledge representation language than propositional logic
- We can directly talk about objects, their properties, relations between them, etc. ...
- Here we discuss first-order logic and resolution
- However, there is a price to pay for this expressiveness in terms of decidability
- References:
 - Ivan Bratko, *Prolog Programming for Artificial Intelligence*, Addison-Wesley, 2001. (Chapter 15)
 - Stuart J. Russell and Peter Norvig, *Artificial Intelligence: A Modern Approach*, Prentice-Hall International, 1995. (Chapter 6)

Overview

- Syntax of First-Order Logic
- Semantics of First-Order Logic
- Conjunctive Normal Form
- Unification
- First-Order Resolution
- Soundness and Completeness
- Decidability
- Conclusion

Syntax of First-Order Logic

- Constant Symbols: a, b, ..., Mary (objects)
- Variables: *x*, *y*, ...
- Function Symbols: *f*, *mother_of*, *sine*, ...
- Predicate Symbols: Mother, likes, ...
- Quantifiers: ∀ (universal); ∃ (existential)

Terms: constant, variable, functions applied to terms (refer to objects)

- Atomic Sentences: predicate applied to terms (state facts)
- Ground (closed) term: a term with no variable symbols

Syntax of First-Order Logic

```
Sentence ::= AtomicSentence || Sentence Connective Sentence
      \parallel Quantifier Variable Sentence \parallel \neg Sentence \parallel (Sentence)
AtomicSentence ::= Predicate ( Term* )
Term ::= Function (Term*) || Constant || Variable
Connective ::= \rightarrow || \land || \lor || \leftrightarrow
Quantifier ::= \forall \parallel \exists
Constant ::= a || John || ...
Variable ::= x \parallel men \parallel \dots
Predicate ::= P \parallel \mathbf{Red} \parallel \mathbf{Between} \parallel \dots
Function ::= f \parallel Father \parallel \dots
```


Converting English into First-Order Logic

- Everyone likes lying on the beach $\forall x \text{ Beach}(x)$
- Someone likes Fido $\exists x \ Likes(x, \ Fido)$
- No one likes Fido $\neg \exists x \ Likes(x, \ Fido)$
- Fido doesn't like everyone $\neg \forall x \ Likes(Fido, x)$
- All cats are mammals $\forall x (Cat(x) \rightarrow Mammal(x))$
- Some mammals are carnivorous $\exists x (Mammal(x) \land Carnivorous(x))$

Nested Quantifiers

Note that the order of quantification is very important

- Everything likes everything $\forall x \forall y \ Likes(x, y)$
- Something likes something $\exists x \exists y \ Likes(x, y)$
- Everything likes something $\forall x \exists y \ Likes(x, y)$
- There is something liked by everything $\exists y \ \forall x \ Likes(x, y)$

Scope of Quantifiers

- The scope of a quantifier in a formula φ is that subformula ψ of φ of which that quantifier is the main logical operator
- Variables belong to the innermost quantifier that mentions them
- Examples:

◦
$$Q(x) \rightarrow \forall y \ P(x, \ y)$$
 — scope of $\forall y \text{ is } P(x, \ y)$
◦ $\forall z \ P(z) \rightarrow \neg Q(z)$ — scope of $\forall z \text{ is } P(z)$ but not $Q(z)$
◦ $\exists x(P(x) \rightarrow \forall x \ P(x))$
◦ $\forall x(P(x) \rightarrow Q(x)) \rightarrow (\forall x \ P(x) \rightarrow \forall x \ Q(x))$

Terminology

- Free-variable occurrences in a formula
 - All variables in an atomic formula
 - $\circ~$ The free-variable occurrences in $\neg\phi$ are those in ϕ
 - $\circ~$ The free-variable occurrences in $\phi \oplus \psi$ are those in ϕ and ψ for any connective $\oplus~$
 - The free-variable occurrences in ∀x Φ and ∃x Φ are those in Φ except for occurrences of x
- Open formula A formula in which free variables occur
- Closed formula A formula with no free variables
- Closed formulae are also known as sentences

Semantics of First-Order Logic

- A world in which a sentence is true under a particular interpretation is known as a *model* of that sentence under the interpretation
- Constant symbols an interpretation specifies which object in the world a constant refers to
 - Predicate symbols an interpretation specifies which relation in the model a predicate refers to
 - Function symbols an interpretation specifies which function in the model a function symbol refers to
 - Universal quantifier is true iff all all instances are true
 - Existential quantifier is true iff one instance is true

Conversion into Conjunctive Normal Form

1. Eliminate implication

$$\phi \to \psi \equiv \neg \phi \lor \psi$$

2. Move negation inwards (negation normal form)

$$\neg(\phi \land \psi) \equiv \neg\phi \lor \neg\psi$$
$$\neg(\phi \lor \psi) \equiv \neg\phi \land \neg\psi$$
$$\neg \forall x \phi \equiv \exists x \neg\phi$$
$$\neg \exists x \phi \equiv \forall x \neg\phi$$
$$\neg\neg\phi \equiv \phi$$

3. Standardise variables

 $(\forall x \ P(x)) \lor (\exists x \ Q(x))$ becomes $(\forall x \ P(x)) \lor (\exists y \ Q(y))$

Conversion into Conjunctive Normal Form

4. Skolemise

$$\exists x \ P(x) \Rightarrow P(a) \forall x \exists y \ P(x, y) \Rightarrow \forall x \ P(x, f(x)) \forall x \forall y \exists z \ P(x, y, z) \Rightarrow \forall x \forall y \ P(x, y, f(x, y))$$

- 5. Drop universal quantifiers
- 6. Distribute \wedge over \vee

$$(\phi \land \psi) \lor \chi \equiv (\phi \lor \chi) \land (\psi \lor \chi)$$

7. Flatten nested conjunctions and disjunctions

$$(\phi \land \psi) \land \chi \equiv \phi \land \psi \land \chi; (\phi \lor \psi) \lor \chi \equiv \phi \lor \psi \lor \chi$$

(8. In proofs, rename variables in separate clauses — standardise apart)

CNF — Example 1

$$\forall x[(\forall y \ P(x, \ y)) \rightarrow \neg \forall y(Q(x, \ y) \rightarrow R(x, \ y))]$$

$$1. \ \forall x[\neg(\forall y \ P(x, \ y)) \lor \neg \forall y(\neg Q(x, \ y) \lor R(x, \ y))]$$

$$2. \ \forall x[(\exists y \ \neg P(x, \ y)) \lor \exists y(Q(x, \ y) \land \neg R(x, \ y))]$$

$$3. \ \forall x[(\exists y \ \neg P(x, \ y)) \lor \exists z(Q(x, \ z) \land \neg R(x, \ z))]$$

$$4. \ \forall x[\neg P(x, \ f(x)) \lor (Q(x, \ g(x)) \land \neg R(x, \ g(x)))]$$

$$5. \ \neg P(x, \ f(x)) \lor (Q(x, \ g(x)) \land \neg R(x, \ g(x)))$$

$$6. \ (\neg P(x, \ f(x)) \lor Q(x, \ g(x))) \land (\neg P(x, \ f(x)) \lor \neg R(x, \ g(x)))$$

$$8. \ \neg P(x, \ f(x)) \lor Q(x, \ g(x))$$

$$\neg P(y, \ f(y)) \lor \neg R(y, \ g(y))$$

CNF — Example 2

 $\neg \exists x \forall y \forall z ((P(y) \lor Q(z)) \rightarrow (P(x) \lor Q(x)))$ $\neg \exists x \forall y \forall z (\neg (P(y) \lor Q(z)) \lor (P(x) \lor Q(x))) \text{ [Eliminate } \rightarrow]$ $\forall x \neg \forall y \forall z (\neg (P(y) \lor Q(z)) \lor (P(x) \lor Q(x))) \text{ [Move } \neg \text{ inwards]}$ $\forall x \exists y \neg \forall z (\neg (P(y) \lor Q(z)) \lor (P(x) \lor Q(x))) \text{ [Move } \neg \text{ inwards]}$ $\forall x \exists y \exists z \neg (\neg (P(y) \lor Q(z)) \lor (P(x) \lor Q(x))) \text{ [Move } \neg \text{ inwards]}$ $\forall x \exists y \exists z (\neg (P(y) \lor Q(z)) \land \neg (P(x) \lor Q(x))) \text{ [Move } \neg \text{ inwards]}$ $\forall x \exists y \exists z ((P(y) \lor Q(z)) \land (\neg P(x) \land \neg Q(x))) \text{ [Move } \neg \text{ inwards]}$ $\forall x ((P(f(x)) \lor Q((g(x))) \land (\neg P(x) \land \neg Q(x))) \text{ [Skolemise]}$ $(P(f(x)) \lor Q((g(x))) \land \neg P(x) \land \neg Q(x) \text{ [Drop } \forall]$

Unification

- Unification takes two atomic formulae and returns a substitution that makes them look the same
- Example:

$$\{x/a, y/z, w/f(b, c)\}$$

- Note:

 - Each variable has at most one associated expression
 No variable with an associated expression occurs within any associated expression
- $\{x/g(y), y/f(x)\}$ is not a substitution
- Substitution σ that makes a set of expressions identical known as a *unifier*
- Substitution σ_1 is a more general unifier than a substitution σ_2 if for some substitution τ . $\sigma_2 = \sigma_1 \tau$.

First-Order Resolution

• Generalised Resolution Rule:

For clauses $\chi \lor \Phi$ and $\neg \Psi \lor \zeta$

• $\chi \lor \zeta$ is known as the *resolvent*

 $\vdash \exists x (P(x) \rightarrow \forall x P(x)))$ $CNF(\neg \exists x(P(x) \rightarrow \forall xP(x)))$ $\forall x \neg (\neg P(x) \lor \forall x P(x))$ [Drive \neg inwards] $\forall x(\neg \neg P(x) \land \neg \forall x P(x))$ [Drive \neg inwards] $\forall x(P(x) \land \exists x \neg P(x)) \text{ [Drive } \neg \text{ inwards]}$ $\forall x(P(x) \land \exists z \neg P(z))$ [Standardise Variables] $\forall x(P(x) \land \neg P(f(x)))$ [Skolemise] $P(x) \land \neg P(f(x))$ [Drop \forall] $1 \dot{P}(x) \dot{\Gamma} \dot{C}$ 2. $\neg P(f(y))$ [\neg Conclusion] 3. P(f(y)) [1. {x/f(y)}] 4. □ [2. 3. Resolution]

1. $P(f(x)) \lor Q(g(x))$ [¬ Conclusion] 2. $\neg P(y)$ [¬ Conclusion] 3. $\neg Q(z)$ [¬ Conclusion] 4. $P(f(a)) \lor Q(g(a))$ [1. {x/a}] 5. $\neg P(f(a))$ [2. {y/f(a)}] 6. $\neg Q(g(a))$ [3. {z/g(a)}] 7. Q(g(a)) [4, 5. Resolution] 8. \Box [6, 7. Resolution]

- 1. man(Marcus) [Premise]
- 2. Pompeian(Marcus) [Premise]
- 3. \neg *Pompeian*(*x*) \lor *Roman*(*x*) [Premise]
- 4. ruler(Caesar) [Premise]
- 5. $\neg Roman(y) \lor loyaltyto(y, Caesar) \lor hate(y, Caesar)$ [Premise]
- 6. loyaltyto(z, f(z)) [Premise]
- 7. \neg *man*(*w*) $\lor \neg$ *ruler*(*u*) $\lor \neg$ *tryassassinate*(*w*, *u*) $\lor \neg$ *loyaltyto*(*w*, *u*) [Premise]
- 8. tryassassinate(Marcus, Caesar) [Premise]
- 9. ¬hate(Marcus, Caesar) [¬ Conclusion]
- 10. \neg *Roman*(*Marcus*) \lor *loyaltyto*(*Marcus*, *Caesar*) \lor *hate*(*Marcus*, *Caesar*) [5. {*y*/*Marcus*}]
- 11. ¬*Roman*(*Marcus*) ∨ *loyaltyto*(*Marcus*, *Caesar*) [9, 10. Resolution]

- 12. \neg *Pompeian*(*Marcus*) \lor *Roman*(*Marcus*) [3. {x/Marcus}]
- 13. *loyaltyto*(*Marcus*, *Caesar*) ∨ ¬*Pompeian*(*Marcus*) [11, 12. Resolution]
- 14. loyaltyto(Marcus, Caesar) [2, 13. Resolution]
- 15. \neg man(Marcus) $\lor \neg$ ruler(Caesar) $\lor \neg$ tryassassinate(Marcus, Caesar) \lor
- \neg loyaltyto(Marcus, Caesar) [7. {w/Marcus, u/Caesar}]
- 16. \neg man(Marcus) $\lor \neg$ ruler(Caesar) $\lor \neg$ tryassassinate(Marcus, Caesar) [14,
- 15. Resolution]
- 17. \neg ruler(Caesar) $\lor \neg$ tryassassinate(Marcus, Caesar) [1, 16. Resolution]
- 18. ¬*tryassassinate*(*Marcus*, *Caesar*) [4, 17. Resolution]
- 19. [8, 18. Resolution]

Soundness and Completeness

- Resolution is
 - *sound* (if $\lambda \vdash \rho$, then $\lambda \models \rho$)
 - *complete* (if $\lambda \models \rho$, then $\lambda \vdash \rho$)

Decidability

- First-order logic is not decidable
- How would you prove this?

Conclusion

- First-order logic allows us to speak about objects, properties of objects and relationships between objects
- It also allows quantification over variables
- First-order logic is quite an expressive knowledge representation language; much more so than propositional logic
- However, we do need to add things like equality if we wish to be able to do things like counting
- · We have also traded expressiveness for decidability
- How much of a problems is this?
- If we add (Peano) axioms for mathematics, then we encounter Gödel's famous *incompleteness theorem* (which is beyond the scope of this course)

