COMP4418: Knowledge Representation and Reasoning
First-Order Logic 1

Maurice Pagnucco
School of Computer Science and Engineering

COMP4418, Week 2
First-Order Logic

• First-order logic furnishes us with a much more expressive knowledge representation language than propositional logic
• We can directly talk about objects, their properties, relations between them, etc. . . .
• Here we discuss first-order logic and resolution
• However, there is a price to pay for this expressiveness in terms of decidability

• References:
Overview

- Syntax of First-Order Logic
- Semantics of First-Order Logic
- Conjunctive Normal Form
- Unification
- First-Order Resolution
- Soundness and Completeness
- Decidability
- Conclusion
Syntax of First-Order Logic

- **Constant Symbols:** $a, b, \ldots, Mary$ (objects)
- **Variables:** x, y, \ldots
- **Function Symbols:** $f, mother_of, sine, \ldots$
- **Predicate Symbols:** $Mother, likes, \ldots$
- **Quantifiers:** \forall (universal); \exists (existential)

Terms: constant, variable, functions applied to terms (refer to objects)

- **Atomic Sentences:** predicate applied to terms (state facts)
- **Ground (closed) term:** a term with no variable symbols
Syntax of First-Order Logic

Sentence ::= AtomicSentence ∥ Sentence Connective Sentence
∥ Quantifier Variable Sentence ∥ ¬ Sentence ∥ (Sentence)
AtomicSentence ::= Predicate (Term*)
Term ::= Function (Term*) ∥ Constant ∥ Variable
Connective ::= → ∥ ∧ ∥ ∨ ∥ ↔
Quantifier ::= ∀ ∥ ∃
Constant ::= a ∥ John ∥ . . .
Variable ::= x ∥ men ∥ . . .
Predicate ::= P ∥ Red ∥ Between ∥ . . .
Function ::= f ∥ Father ∥ . . .
Converting English into First-Order Logic

- Everyone likes lying on the beach — $\forall x \ Beach(x)$
- Someone likes Fido — $\exists x \ Likes(x, \ Fido)$
- No one likes Fido — $\neg \exists x \ Likes(x, \ Fido)$
- Fido doesn’t like everyone — $\neg \forall x \ Likes(Fido, \ x)$
- All cats are mammals — $\forall x \ (\ Cat(x) \rightarrow \ Mammal(x))$
- Some mammals are carnivorous — $\exists x \ (\ Mammal(x) \land \ Carnivorous(x))$
Nested Quantifiers

Note that the order of quantification is very important

- Everything likes everything — $\forall x \ \forall y \ Likes(x, \ y)$
- Something likes something — $\exists x \ \exists y \ Likes(x, \ y)$
- Everything likes something — $\forall x \ \exists y \ Likes(x, \ y)$
- There is something liked by everything — $\exists y \ \forall x \ Likes(x, \ y)$
Scope of Quantifiers

- The *scope* of a quantifier in a formula ϕ is that subformula ψ of ϕ of which that quantifier is the main logical operator.

- Variables belong to the *innermost* quantifier that mentions them.

- Examples:
 - $Q(x) \rightarrow \forall y \ P(x, y)$ — scope of $\forall y$ is $P(x, y)$
 - $\forall z \ P(z) \rightarrow \neg Q(z)$ — scope of $\forall z$ is $P(z)$ but not $Q(z)$
 - $\exists x(P(x) \rightarrow \forall x \ P(x))$
 - $\forall x(P(x) \rightarrow Q(x)) \rightarrow (\forall x \ P(x) \rightarrow \forall x \ Q(x))$
Terminology

- **Free-variable occurrences** in a formula —
 - All variables in an atomic formula
 - The free-variable occurrences in $\neg \phi$ are those in ϕ
 - The free-variable occurrences in $\phi \oplus \psi$ are those in ϕ and ψ for any connective \oplus
 - The free-variable occurrences in $\forall x \Phi$ and $\exists x \Phi$ are those in Φ except for occurrences of x

- **Open formula** — A formula in which free variables occur
- **Closed formula** — A formula with no free variables
- Closed formulae are also known as *sentences*
Semantics of First-Order Logic

- A world in which a sentence is true under a particular interpretation is known as a *model* of that sentence under the interpretation.
- **Constant symbols**: An interpretation specifies which object in the world a constant refers to.
- **Predicate symbols**: An interpretation specifies which relation in the model a predicate refers to.
- **Function symbols**: An interpretation specifies which function in the model a function symbol refers to.
- **Universal quantifier**: Is true iff all all instances are true.
- **Existential quantifier**: Is true iff one instance is true.
Conversion into Conjunctive Normal Form

1. Eliminate implication

\[\phi \rightarrow \psi \equiv \neg \phi \lor \psi \]

2. Move negation inwards (negation normal form)

\[\neg(\phi \land \psi) \equiv \neg \phi \lor \neg \psi \]
\[\neg(\phi \lor \psi) \equiv \neg \phi \land \neg \psi \]
\[\neg \forall x \phi \equiv \exists x \neg \phi \]
\[\neg \exists x \phi \equiv \forall x \neg \phi \]
\[\neg \neg \phi \equiv \phi \]

3. Standardise variables

\[(\forall x P(x)) \lor (\exists x Q(x)) \]
becomes \[(\forall x P(x)) \lor (\exists y Q(y)) \]
4. Skolemise
 \[\exists x \ P(x) \Rightarrow P(a) \]
 \[\forall x \exists y \ P(x, \ y) \Rightarrow \forall x \ P(x, \ f(x)) \]
 \[\forall x \forall y \exists z \ P(x, \ y, \ z) \Rightarrow \forall x \forall y \ P(x, \ y, \ f(x, \ y)) \]

5. Drop universal quantifiers

6. Distribute \(\land \) over \(\lor \)
 \[(\phi \land \psi) \lor \chi \equiv (\phi \lor \chi) \land (\psi \lor \chi) \]

7. Flatten nested conjunctions and disjunctions
 \[(\phi \land \psi) \land \chi \equiv \phi \land \psi \land \chi; \ (\phi \lor \psi) \lor \chi \equiv \phi \lor \psi \lor \chi \]

(8. In proofs, rename variables in separate clauses — *standardise apart*)
∀x[(∀y P(x, y)) → ¬∀y(Q(x, y) → R(x, y))]
1. ∀x[¬(∀y P(x, y)) ∨ ¬∀y(¬Q(x, y) ∨ R(x, y))]
2. ∀x[(∃y ¬P(x, y)) ∨ ∃y(Q(x, y) ∧ ¬R(x, y))]
3. ∀x[(∃y ¬P(x, y)) ∨ ∃z(Q(x, z) ∧ ¬R(x, z))]
4. ∀x[¬P(x, f(x)) ∨ (Q(x, g(x)) ∧ ¬R(x, g(x)))]
5. ¬P(x, f(x)) ∨ (Q(x, g(x)) ∧ ¬R(x, g(x)))]
6. (¬P(x, f(x)) ∨ Q(x, g(x))) ∧ (¬P(x, f(x)) ∨ ¬R(x, g(x)))]
8. ¬P(x, f(x)) ∨ Q(x, g(x))
 ¬P(y, f(y)) ∨ ¬R(y, g(y))
\neg \exists x \forall y \forall z ((P(y) \lor Q(z)) \rightarrow (P(x) \lor Q(x)))
\neg \exists x \forall y \forall z (\neg (P(y) \lor Q(z)) \lor (P(x) \lor Q(x)))$ [Eliminate \rightarrow]
$\forall x \neg \forall y \forall z (\neg (P(y) \lor Q(z)) \lor (P(x) \lor Q(x)))$ [Move \neg inwards]
$\forall x \exists y \neg \forall z (\neg (P(y) \lor Q(z)) \lor (P(x) \lor Q(x)))$ [Move \neg inwards]
$\forall x \exists y \exists z (\neg (P(y) \lor Q(z)) \lor (P(x) \lor Q(x)))$ [Move \neg inwards]
$\forall x \exists y \exists z (\neg (P(y) \lor Q(z)) \land \neg (P(x) \lor Q(x)))$ [Move \neg inwards]
$\forall x \exists y \exists z ((P(y) \lor Q(z)) \land (\neg P(x) \land \neg Q(x)))$ [Move \neg inwards]
$\forall x ((P(f(x)) \lor Q(g(x))) \land (\neg P(x) \land \neg Q(x)))$ [Skolemise]
$(P(f(x)) \lor Q(g(x))) \land \neg P(x) \land \neg Q(x)$ [Drop \forall]
Unification

- Unification takes two atomic formulae and returns a substitution that makes them look the same
- Example:
 \[\{ x/a, y/z, w/f(b, c) \} \]
- Note:
 1. Each variable has at most one associated expression
 2. No variable with an associated expression occurs within any associated expression
- \[\{ x/g(y), y/f(x) \} \] is not a substitution
- Substitution \(\sigma \) that makes a set of expressions identical known as a unifier
- Substitution \(\sigma_1 \) is a more general unifier than a substitution \(\sigma_2 \) if for some substitution \(\tau \), \(\sigma_2 = \sigma_1 \tau \).
First-Order Resolution

- **Generalised Resolution Rule:**

 For clauses $\chi \lor \Phi$ and $\neg \Psi \lor \zeta$

 $\begin{align*}
 \chi \lor \Phi \\
 \neg \Psi \lor \zeta \\
 \text{(}$\chi \lor \zeta$.\theta$\text{)}
 \end{align*}$

- Where θ is a unifier for atomic formulae Φ and Ψ
- $\chi \lor \zeta$ is known as the *resolvent*
Resolution — Example 1

\[\exists x (P(x) \rightarrow \forall x P(x)) \]

\[\text{CNF}(\neg \exists x (P(x) \rightarrow \forall x P(x))) \]

\[\forall x \neg (\neg P(x) \lor \forall x P(x)) \] [Drive \(\neg \) inwards]

\[\forall x (\neg \neg P(x) \land \neg \forall x P(x)) \] [Drive \(\neg \) inwards]

\[\forall x (P(x) \land \exists x \neg P(x)) \] [Drive \(\neg \) inwards]

\[\forall x (P(x) \land \exists z \neg P(z)) \] [Standardise Variables]

\[\forall x (P(x) \land \neg P(f(x))) \] [Skolemise]

\[P(x) \land \neg P(f(x)) \] [Drop \(\forall \)]

1. \(P(x) \) \(\neg \) Conclusion

2. \(\neg P(f(y)) \) \(\neg \) Conclusion

3. \(P(f(y)) \) [1. \{x/f(y)\}]

4. \(\Box \) [2, 3. Resolution]
Resolution — Example 2

1. \(P(f(x)) \lor Q(g(x)) \) \[\neg \text{Conclusion} \]
2. \(\neg P(y) \) \[\neg \text{Conclusion} \]
3. \(\neg Q(z) \) \[\neg \text{Conclusion} \]
4. \(P(f(a)) \lor Q(g(a)) \) \[1. \{x/a\}\]
5. \(\neg P(f(a)) \) \[2. \{y/f(a)\}\]
6. \(\neg Q(g(a)) \) \[3. \{z/g(a)\}\]
7. \(Q(g(a)) \) \[4, 5. \text{Resolution}\]
8. \(\Box \) \[6, 7. \text{Resolution}\]
1. $\text{man}(\text{Marcus})$ [Premise]
2. $\text{Pompeian}(\text{Marcus})$ [Premise]
3. $\neg \text{Pompeian}(x) \lor \text{Roman}(x)$ [Premise]
4. $\text{ruler}(\text{Caesar})$ [Premise]
5. $\neg \text{Roman}(y) \lor \text{loyaltyto}(y, \text{Caesar}) \lor \text{hate}(y, \text{Caesar})$ [Premise]
6. $\text{loyaltyto}(z, f(z))$ [Premise]
7. $\neg \text{man}(w) \lor \neg \text{ruler}(u) \lor \neg \text{tryassassinate}(w, u) \lor \neg \text{loyaltyto}(w, u)$ [Premise]
8. $\text{tryassassinate}(\text{Marcus, Caesar})$ [Premise]
9. $\neg \text{hate}(\text{Marcus, Caesar})$ [\neg Conclusion]
10. $\neg \text{Roman}(\text{Marcus}) \lor \text{loyaltyto}(\text{Marcus, Caesar}) \lor \text{hate}(\text{Marcus, Caesar})$ [5. \{y/\text{Marcus}\}]
11. $\neg \text{Roman}(\text{Marcus}) \lor \text{loyaltyto}(\text{Marcus, Caesar})$ [9, 10. Resolution]
Resolution — Example 3

12. $\neg \text{Pompeian}(\text{Marcus}) \lor \text{Roman}(\text{Marcus})$ [3. $\{x/\text{Marcus}\}$]
13. $\text{loyaltyto}(\text{Marcus}, \text{Caesar}) \lor \neg \text{Pompeian}(\text{Marcus})$ [11, 12. Resolution]
14. $\text{loyaltyto}(\text{Marcus}, \text{Caesar})$ [2, 13. Resolution]
15. $\neg \text{man}(\text{Marcus}) \lor \neg \text{ruler}(\text{Caesar}) \lor \neg \text{tryassassinate}(\text{Marcus}, \text{Caesar}) \lor \neg \text{loyaltyto}(\text{Marcus}, \text{Caesar})$ [7. $\{w/\text{Marcus}, u/\text{Caesar}\}$]
16. $\neg \text{man}(\text{Marcus}) \lor \neg \text{ruler}(\text{Caesar}) \lor \neg \text{tryassassinate}(\text{Marcus}, \text{Caesar})$ [14, 15. Resolution]
17. $\neg \text{ruler}(\text{Caesar}) \lor \neg \text{tryassassinate}(\text{Marcus}, \text{Caesar})$ [1, 16. Resolution]
18. $\neg \text{tryassassinate}(\text{Marcus}, \text{Caesar})$ [4, 17. Resolution]
19. \square [8, 18. Resolution]
Soundness and Completeness

• Resolution is
 ○ sound (if $\lambda \vdash \rho$, then $\lambda \models \rho$)
 ○ complete (if $\lambda \models \rho$, then $\lambda \vdash \rho$)

Decidability
• First-order logic is not decidable
• How would you prove this?
Conclusion

• First-order logic allows us to speak about objects, properties of objects and relationships between objects
• It also allows quantification over variables
• First-order logic is quite an expressive knowledge representation language; much more so than propositional logic
• However, we do need to add things like equality if we wish to be able to do things like counting
• We have also traded expressiveness for decidability
• How much of a problems is this?
• If we add (Peano) axioms for mathematics, then we encounter Gödel’s famous *incompleteness theorem* (which is beyond the scope of this course)