
2a. Kernelization

COMP6741: Parameterized and Exact Computation

Serge Gaspers

School of Computer Science and Engineering, UNSW Sydney, Australia

19T3

S. Gaspers (UNSW) Kernelization 19T3 1 / 34

Outline

1 Vertex Cover
Simplification rules
Preprocessing algorithm

2 Kernelization algorithms

3 Kernel for Hamiltonian Cycle

4 Kernel for Edge Clique Cover

5 Kernels and Fixed-parameter tractability

6 Further Reading

S. Gaspers (UNSW) Kernelization 19T3 2 / 34

Outline

1 Vertex Cover
Simplification rules
Preprocessing algorithm

2 Kernelization algorithms

3 Kernel for Hamiltonian Cycle

4 Kernel for Edge Clique Cover

5 Kernels and Fixed-parameter tractability

6 Further Reading

S. Gaspers (UNSW) Kernelization 19T3 3 / 34

Vertex cover

A vertex cover of a graph G = (V,E) is a subset of vertices S ⊆ V such that for
each edge {u, v} ∈ E, we have u ∈ S or v ∈ S.

Vertex Cover
Input: A graph G = (V,E) and an integer k
Parameter: k
Question: Does G have a vertex cover of size at most k?

a

b c

d e

S. Gaspers (UNSW) Kernelization 19T3 4 / 34

Exercise 1

a

b
c d

e
f g

k = 4

Is this a Yes-instance for Vertex Cover?
(Is there S ⊆ V with |S| ≤ 4, such that ∀ uv ∈ E, u ∈ S or v ∈ S?)

S. Gaspers (UNSW) Kernelization 19T3 5 / 34

Exercise 2

a b c

d
e

f
g

h

i

j k

l

m

n

k = 7

S. Gaspers (UNSW) Kernelization 19T3 6 / 34

Outline

1 Vertex Cover
Simplification rules
Preprocessing algorithm

2 Kernelization algorithms

3 Kernel for Hamiltonian Cycle

4 Kernel for Edge Clique Cover

5 Kernels and Fixed-parameter tractability

6 Further Reading

S. Gaspers (UNSW) Kernelization 19T3 7 / 34

Simplification rules for Vertex Cover

(Degree-0)

If ∃v ∈ V such that dG(v) = 0, then set G← G− v.

Proving correctness. A simplification rule is sound if for every instance, it
produces an equivalent instance. Two instances I, I ′ are equivalent if they are
both Yes-instances or they are both No-instances.

Lemma 1

(Degree-0) is sound.

Proof.

First, suppose (G− v, k) is a Yes-instance. Let S be a vertex cover for G− v of
size at most k. Then, S is also a vertex cover for G since no edge of G is incident
to v. Thus, (G, k) is a Yes-instance.
Now, suppose (G− v, k) is a No-instance. For the sake of contradiction, assume
(G, k) is a Yes-instance. Let S be a vertex cover for G of size at most k. But
then, S \ {v} is a vertex cover of size at most k for G− v; a contradiction.

S. Gaspers (UNSW) Kernelization 19T3 8 / 34

Simplification rules for Vertex Cover

(Degree-0)

If ∃v ∈ V such that dG(v) = 0, then set G← G− v.

Proving correctness. A simplification rule is sound if for every instance, it
produces an equivalent instance. Two instances I, I ′ are equivalent if they are
both Yes-instances or they are both No-instances.

Lemma 1

(Degree-0) is sound.

Proof.

First, suppose (G− v, k) is a Yes-instance. Let S be a vertex cover for G− v of
size at most k. Then, S is also a vertex cover for G since no edge of G is incident
to v. Thus, (G, k) is a Yes-instance.
Now, suppose (G− v, k) is a No-instance. For the sake of contradiction, assume
(G, k) is a Yes-instance. Let S be a vertex cover for G of size at most k. But
then, S \ {v} is a vertex cover of size at most k for G− v; a contradiction.

S. Gaspers (UNSW) Kernelization 19T3 8 / 34

Simplification rules for Vertex Cover

(Degree-0)

If ∃v ∈ V such that dG(v) = 0, then set G← G− v.

Proving correctness. A simplification rule is sound if for every instance, it
produces an equivalent instance. Two instances I, I ′ are equivalent if they are
both Yes-instances or they are both No-instances.

Lemma 1

(Degree-0) is sound.

Proof.

First, suppose (G− v, k) is a Yes-instance. Let S be a vertex cover for G− v of
size at most k. Then, S is also a vertex cover for G since no edge of G is incident
to v. Thus, (G, k) is a Yes-instance.
Now, suppose (G− v, k) is a No-instance. For the sake of contradiction, assume
(G, k) is a Yes-instance. Let S be a vertex cover for G of size at most k. But
then, S \ {v} is a vertex cover of size at most k for G− v; a contradiction.

S. Gaspers (UNSW) Kernelization 19T3 8 / 34

Simplification rules for Vertex Cover

(Degree-1)

If ∃v ∈ V such that dG(v) = 1, then set G← G−NG[v] and k ← k − 1.

Lemma 1

(Degree-1) is sound.

Proof.

Let u be the neighbor of v in G. Thus, NG[v] = {u, v}.
If S is a vertex cover of G of size at most k, then S \ {u, v} is a vertex cover of
G−NG[v] of size at most k − 1, because u ∈ S or v ∈ S.
If S′ is a vertex cover of G−NG[v] of size at most k − 1, then S′ ∪ {u} is a
vertex cover of G of size at most k, since all edges that are in G but not in
G−NG[v] are incident to v.

S. Gaspers (UNSW) Kernelization 19T3 8 / 34

Simplification rules for Vertex Cover

(Degree-1)

If ∃v ∈ V such that dG(v) = 1, then set G← G−NG[v] and k ← k − 1.

Lemma 1

(Degree-1) is sound.

Proof.

Let u be the neighbor of v in G. Thus, NG[v] = {u, v}.
If S is a vertex cover of G of size at most k, then S \ {u, v} is a vertex cover of
G−NG[v] of size at most k − 1, because u ∈ S or v ∈ S.
If S′ is a vertex cover of G−NG[v] of size at most k − 1, then S′ ∪ {u} is a
vertex cover of G of size at most k, since all edges that are in G but not in
G−NG[v] are incident to v.

S. Gaspers (UNSW) Kernelization 19T3 8 / 34

Simplification rules for Vertex Cover

(Large Degree)

If ∃v ∈ V such that dG(v) > k, then set G← G− v and k ← k − 1.

Lemma 1

(Large Degree) is sound.

Proof.

Let S be a vertex cover of G of size at most k. If v /∈ S, then NG(v) ⊆ S,
contradicting that |S| ≤ k.

S. Gaspers (UNSW) Kernelization 19T3 8 / 34

Simplification rules for Vertex Cover

(Large Degree)

If ∃v ∈ V such that dG(v) > k, then set G← G− v and k ← k − 1.

Lemma 1

(Large Degree) is sound.

Proof.

Let S be a vertex cover of G of size at most k. If v /∈ S, then NG(v) ⊆ S,
contradicting that |S| ≤ k.

S. Gaspers (UNSW) Kernelization 19T3 8 / 34

Simplification rules for Vertex Cover

(Number of Edges)

If dG(v) ≤ k for each v ∈ V and |E| > k2 then return No

Lemma 1

(Number of Edges) is sound.

Proof.

Assume dG(v) ≤ k for each v ∈ V and |E| > k2.
Suppose S ⊆ V , |S| ≤ k, is a vertex cover of G.
We have that S covers at most k2 edges.
However, |E| ≥ k2 + 1.
Thus, S is not a vertex cover of G.

S. Gaspers (UNSW) Kernelization 19T3 8 / 34

Simplification rules for Vertex Cover

(Number of Edges)

If dG(v) ≤ k for each v ∈ V and |E| > k2 then return No

Lemma 1

(Number of Edges) is sound.

Proof.

Assume dG(v) ≤ k for each v ∈ V and |E| > k2.
Suppose S ⊆ V , |S| ≤ k, is a vertex cover of G.
We have that S covers at most k2 edges.
However, |E| ≥ k2 + 1.
Thus, S is not a vertex cover of G.

S. Gaspers (UNSW) Kernelization 19T3 8 / 34

Outline

1 Vertex Cover
Simplification rules
Preprocessing algorithm

2 Kernelization algorithms

3 Kernel for Hamiltonian Cycle

4 Kernel for Edge Clique Cover

5 Kernels and Fixed-parameter tractability

6 Further Reading

S. Gaspers (UNSW) Kernelization 19T3 9 / 34

Preprocessing algorithm for Vertex Cover

VC-preprocess
Input: A graph G and an integer k.
Output: A graph G′ and an integer k′ such that G has a vertex cover of size

at most k if and only if G′ has a vertex cover of size at most k′.

G′ ← G
k′ ← k
repeat

Execute simplification rules (Degree-0), (Degree-1), (Large Degree), and
(Number of Edges) for (G′, k′)

until no simplification rule applies
return (G′, k′)

S. Gaspers (UNSW) Kernelization 19T3 10 / 34

Effectiveness of preprocessing algorithms

How effective is VC-preprocess?

We would like to study preprocessing algorithms mathematically and quantify
their effectiveness.

S. Gaspers (UNSW) Kernelization 19T3 11 / 34

First try

Say that a preprocessing algorithm for a problem Π is nice if it runs in
polynomial time and for each instance for Π, it returns an instance for Π that
is strictly smaller.

→ executing it a linear number of times reduces the instance to a single bit

→ such an algorithm would solve Π in polynomial time

For NP-hard problems this is not possible unless P = NP

We need a different measure of effectiveness

S. Gaspers (UNSW) Kernelization 19T3 12 / 34

First try

Say that a preprocessing algorithm for a problem Π is nice if it runs in
polynomial time and for each instance for Π, it returns an instance for Π that
is strictly smaller.

→ executing it a linear number of times reduces the instance to a single bit

→ such an algorithm would solve Π in polynomial time

For NP-hard problems this is not possible unless P = NP

We need a different measure of effectiveness

S. Gaspers (UNSW) Kernelization 19T3 12 / 34

Measuring the effectiveness of preprocessing algorithms

We will measure the effectiveness in terms of the parameter

How large is the resulting instance in terms of the parameter?

S. Gaspers (UNSW) Kernelization 19T3 13 / 34

Effectiveness of VC-preprocess

Lemma 2

For any instance (G, k) for Vertex Cover, VC-preprocess produces an
equivalent instance (G′, k′) of size O(k2).

Proof.

Since all simplification rules are sound, (G = (V,E), k) and (G′ = (V ′, E′), k′)
are equivalent.
By (Number of Edges), |E′| ≤ (k′)2 ≤ k2.
By (Degree-0) and (Degree-1), each vertex in V ′ has degree at least 2 in G′.
Since

∑
v∈V ′ dG′(v) = 2|E′| ≤ 2k2, this implies that |V ′| ≤ k2.

Thus, |V ′|+ |E′| ⊆ O(k2).

S. Gaspers (UNSW) Kernelization 19T3 14 / 34

Outline

1 Vertex Cover
Simplification rules
Preprocessing algorithm

2 Kernelization algorithms

3 Kernel for Hamiltonian Cycle

4 Kernel for Edge Clique Cover

5 Kernels and Fixed-parameter tractability

6 Further Reading

S. Gaspers (UNSW) Kernelization 19T3 15 / 34

Kernelization: definition

Definition 3
A kernelization for a parameterized problem Π is a polynomial time algorithm,
which, for any instance I of Π with parameter k, produces an equivalent instance
I ′ of Π with parameter k′ such that |I ′| ≤ f(k) and k′ ≤ f(k) for a computable
function f .
We refer to the function f as the size of the kernel.

Note: We do not formally require that k′ ≤ k, but this will be the case for many
kernelizations.

S. Gaspers (UNSW) Kernelization 19T3 16 / 34

VC-preprocess is a quadratic kernelization

Theorem 4

VC-preprocess is a O(k2) kernelization for Vertex Cover.

Can we obtain a kernel with fewer vertices?
We defer this question for now.

S. Gaspers (UNSW) Kernelization 19T3 17 / 34

Outline

1 Vertex Cover
Simplification rules
Preprocessing algorithm

2 Kernelization algorithms

3 Kernel for Hamiltonian Cycle

4 Kernel for Edge Clique Cover

5 Kernels and Fixed-parameter tractability

6 Further Reading

S. Gaspers (UNSW) Kernelization 19T3 18 / 34

Hamiltonian Cycle I

A Hamiltonian cycle of G is a subgraph of G that is a cycle on |V (G)| vertices.

vc-Hamiltonian Cycle
Input: A graph G = (V,E).
Parameter: k = vc(G), the size of a smallest vertex cover of G.
Question: Does G have a Hamiltonian cycle?

Thought experiment: Imagine a very large instance where the parameter is tiny.
How can you simplify such an instance?

S. Gaspers (UNSW) Kernelization 19T3 19 / 34

Hamiltonian Cycle II

Issue: We do not actually know a vertex cover of size k.
We do not even know the value of k (it is not part of the input).

S. Gaspers (UNSW) Kernelization 19T3 20 / 34

Hamiltonian Cycle III

Obtain a vertex cover using an approximation algorithm. We will use a
2-approximation algorithm, producing a vertex cover of size ≤ 2k in
polynomial time.

If C is a vertex cover of size ≤ 2k, then I = V \ C is an independent set of
size ≥ |V | − 2k.

No two consecutive vertices in the Hamiltonian Cycle can be in I.

A kernel with ≤ 4k vertices can now be obtained with the following
simplification rule.

(Too-large)

Compute a vertex cover C of size ≤ 2k in polynomial time.
If 2|C| < |V |, then return No

S. Gaspers (UNSW) Kernelization 19T3 21 / 34

Outline

1 Vertex Cover
Simplification rules
Preprocessing algorithm

2 Kernelization algorithms

3 Kernel for Hamiltonian Cycle

4 Kernel for Edge Clique Cover

5 Kernels and Fixed-parameter tractability

6 Further Reading

S. Gaspers (UNSW) Kernelization 19T3 22 / 34

Edge Clique Cover

Definition 5

An edge clique cover of a graph G = (V,E) is a set of cliques in G covering all its
edges.
In other words, if C ⊆ 2V is an edge clique cover then each S ∈ C is a clique in G
and for each {u, v} ∈ E there exists an S ∈ C such that u, v ∈ S.

Example: {{a, b, c}, {b, c, d, e}} is an edge clique cover for this graph.

a

b c

d e

S. Gaspers (UNSW) Kernelization 19T3 23 / 34

Edge Clique Cover

Edge Clique Cover

Input: A graph G = (V,E) and an integer k
Parameter: k
Question: Does G have an edge clique cover of size at most k?

The size of an edge clique cover C is the number of cliques contained in C and is
denoted |C|.

S. Gaspers (UNSW) Kernelization 19T3 23 / 34

Helpful properties

Definition 5

A clique S in a graph G is a maximal clique if there is no other clique S′ in G
with S ⊂ S′.

Lemma 6

A graph G has an edge clique cover C of size at most k if and only if G has an
edge clique cover C′ of size at most k such that each S ∈ C′ is a maximal clique.

Proof sketch.

(⇒): Replace each clique S ∈ C by a maximal clique S′ with S ⊆ S′.
(⇐): Trivial, since C′ is an edge clique cover of size at most k.

S. Gaspers (UNSW) Kernelization 19T3 24 / 34

Simplification rules for Edge Clique Cover

Thought experiment: Imagine a very large instance where the parameter is tiny.
How can you simplify such an instance?

S. Gaspers (UNSW) Kernelization 19T3 25 / 34

Simplification rules for Edge Clique Cover II

The instance could have many degree-0 vertices.

(Isolated)

If there exists a vertex v ∈ V with dG(v) = 0, then set G← G− v.

Lemma 7

(Isolated) is sound.

Proof sketch.
Since no edge is incident to v, a smallest edge clique cover for G− v is a smallest
edge clique cover for G, and vice-versa.

(Isolated-Edge)

If ∃uv ∈ E such that dG(u) = dG(v) = 1, then set G← G− {u, v} and
k ← k − 1.

S. Gaspers (UNSW) Kernelization 19T3 26 / 34

Simplification rules for Edge Clique Cover II

The instance could have many degree-0 vertices.

(Isolated)

If there exists a vertex v ∈ V with dG(v) = 0, then set G← G− v.

Lemma 7

(Isolated) is sound.

Proof sketch.
Since no edge is incident to v, a smallest edge clique cover for G− v is a smallest
edge clique cover for G, and vice-versa.

(Isolated-Edge)

If ∃uv ∈ E such that dG(u) = dG(v) = 1, then set G← G− {u, v} and
k ← k − 1.

S. Gaspers (UNSW) Kernelization 19T3 26 / 34

Simplification rules for Edge Clique Cover III

(Twins)

If ∃u, v ∈ V , u 6= v, such that NG[u] = NG[v], then set G← G− v.

Lemma 8

(Twins) is sound.

Proof.
We need to show that G has an edge clique cover of size at most k if and only if
G− v has an edge clique cover of size at most k.
(⇒): If C is an edge clique cover of G of size at most k, then {S \ {v} : S ∈ C} is
an edge clique cover of G− v of size at most k.
(⇐): Let C′ be an edge clique cover of G− v of size at most k. Partition C′ into
C′u = {S ∈ C′ : u ∈ S} and C′¬u = C′ \ C′u. Note that each set in
Cu = {S ∪ {v} : S ∈ C′u} is a clique in G since NG[u] = NG[v] and that each
edge incident to v is contained in at least one of these cliques. Now, Cu ∪ C′¬u is
an edge clique cover of G of size at most k.

S. Gaspers (UNSW) Kernelization 19T3 27 / 34

Simplification rules for Edge Clique Cover III

(Twins)

If ∃u, v ∈ V , u 6= v, such that NG[u] = NG[v], then set G← G− v.

Lemma 8

(Twins) is sound.

Proof.
We need to show that G has an edge clique cover of size at most k if and only if
G− v has an edge clique cover of size at most k.
(⇒): If C is an edge clique cover of G of size at most k, then {S \ {v} : S ∈ C} is
an edge clique cover of G− v of size at most k.
(⇐): Let C′ be an edge clique cover of G− v of size at most k. Partition C′ into
C′u = {S ∈ C′ : u ∈ S} and C′¬u = C′ \ C′u. Note that each set in
Cu = {S ∪ {v} : S ∈ C′u} is a clique in G since NG[u] = NG[v] and that each
edge incident to v is contained in at least one of these cliques. Now, Cu ∪ C′¬u is
an edge clique cover of G of size at most k.

S. Gaspers (UNSW) Kernelization 19T3 27 / 34

Simplification rules for Edge Clique Cover IV

(Size-V)

If the previous simplification rules do not apply and |V | > 2k, then return No.

Lemma 9

(Size-V) is sound.

Proof.

For the sake of contradiction, assume neither (Isolated) nor (Twins) are
applicable, |V | > 2k, and G has an edge clique cover C of size at most k. Since
2C (the set of all subsets of C) has size at most 2k, and every vertex belongs to at
least one clique in C by (Isolated), we have that there exists two vertices u, v ∈ V
such that {S ∈ C : u ∈ S} = {S ∈ C : v ∈ S}. But then,
NG[u] =

⋃
S∈C:u∈S S =

⋃
S∈C:v∈S S = NG[v], contradicting that (Twin) is not

applicable.

S. Gaspers (UNSW) Kernelization 19T3 28 / 34

Simplification rules for Edge Clique Cover IV

(Size-V)

If the previous simplification rules do not apply and |V | > 2k, then return No.

Lemma 9

(Size-V) is sound.

Proof.

For the sake of contradiction, assume neither (Isolated) nor (Twins) are
applicable, |V | > 2k, and G has an edge clique cover C of size at most k. Since
2C (the set of all subsets of C) has size at most 2k, and every vertex belongs to at
least one clique in C by (Isolated), we have that there exists two vertices u, v ∈ V
such that {S ∈ C : u ∈ S} = {S ∈ C : v ∈ S}. But then,
NG[u] =

⋃
S∈C:u∈S S =

⋃
S∈C:v∈S S = NG[v], contradicting that (Twin) is not

applicable.

S. Gaspers (UNSW) Kernelization 19T3 28 / 34

Kernel for Edge Clique Cover

Theorem 10

Edge Clique Cover has a kernel with O(2k) vertices and O(4k) edges.

Corollary 11

Edge Clique Cover is FPT.

S. Gaspers (UNSW) Kernelization 19T3 29 / 34

Outline

1 Vertex Cover
Simplification rules
Preprocessing algorithm

2 Kernelization algorithms

3 Kernel for Hamiltonian Cycle

4 Kernel for Edge Clique Cover

5 Kernels and Fixed-parameter tractability

6 Further Reading

S. Gaspers (UNSW) Kernelization 19T3 30 / 34

Kernels and Fixed-parameter tractability

Theorem 12
Let Π be a decidable parameterized problem.
Π has a kernelization algorithm ⇔ Π is FPT.

Proof.

(⇒): An FPT algorithm is obtained by first running the kernelization, and then
any brute-force algorithm on the resulting instance.
(⇐): Let A be an FPT algorithm for Π with running time O(f(k)nc).
If f(k) < n, then A has running time O(nc+1). In this case, the kernelization
algorithm runs A and returns a trivial Yes- or No-instance depending on the
answer of A.
Otherwise, f(k) ≥ n. In this case, the kernelization algorithm outputs the input
instance.

S. Gaspers (UNSW) Kernelization 19T3 31 / 34

Kernels and Fixed-parameter tractability

Theorem 12
Let Π be a decidable parameterized problem.
Π has a kernelization algorithm ⇔ Π is FPT.

Proof.

(⇒): An FPT algorithm is obtained by first running the kernelization, and then
any brute-force algorithm on the resulting instance.
(⇐): Let A be an FPT algorithm for Π with running time O(f(k)nc).
If f(k) < n, then A has running time O(nc+1). In this case, the kernelization
algorithm runs A and returns a trivial Yes- or No-instance depending on the
answer of A.
Otherwise, f(k) ≥ n. In this case, the kernelization algorithm outputs the input
instance.

S. Gaspers (UNSW) Kernelization 19T3 31 / 34

Outline

1 Vertex Cover
Simplification rules
Preprocessing algorithm

2 Kernelization algorithms

3 Kernel for Hamiltonian Cycle

4 Kernel for Edge Clique Cover

5 Kernels and Fixed-parameter tractability

6 Further Reading

S. Gaspers (UNSW) Kernelization 19T3 32 / 34

Further Reading

Chapter 2, Kernelization in [Cyg+15]

Chapter 4, Kernelization in [DF13]

Chapter 7, Data Reduction and Problem Kernels in [Nie06]

Chapter 9, Kernelization and Linear Programming Techniques in [FG06]

the new book on kernelization [Fom+19]

S. Gaspers (UNSW) Kernelization 19T3 33 / 34

References I

I [Cyg+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov,
Dániel Marx, Marcin Pilipczuk, Micha l Pilipczuk, and Saket Saurabh.
Parameterized Algorithms. Springer, 2015.

I [DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of
Parameterized Complexity. Springer, 2013.

I [FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory.
Springer, 2006.

I [Fom+19] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and
Meirav Zehavi. Kernelization. Theory of Parameterized Preprocessing.
Cambridge University Press, 2019.

I [Nie06] Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford
University Press, 2006.

S. Gaspers (UNSW) Kernelization 19T3 34 / 34

	Vertex Cover
	Simplification rules
	Preprocessing algorithm

	Kernelization algorithms
	Kernel for Hamiltonian Cycle
	Kernel for Edge Clique Cover
	Kernels and Fixed-parameter tractability
	Further Reading
	References

