2a. Kernelization COMP6741: Parameterized and Exact Computation

Serge Gaspers

School of Computer Science and Engineering, UNSW Sydney, Australia

19T3

Vertex Cover

- Simplification rules
- Preprocessing algorithm
- 2 Kernelization algorithms
- **3** Kernel for HAMILTONIAN CYCLE
- 4 Kernel for Edge Clique Cover
- 5 Kernels and Fixed-parameter tractability

6 Further Reading

Vertex Cover

- Simplification rules
- Preprocessing algorithm

2 Kernelization algorithms

- **3** Kernel for HAMILTONIAN CYCLE
- 4 Kernel for Edge Clique Cover
- 5 Kernels and Fixed-parameter tractability

6 Further Reading

A vertex cover of a graph G = (V, E) is a subset of vertices $S \subseteq V$ such that for each edge $\{u, v\} \in E$, we have $u \in S$ or $v \in S$.

Vertex Cover	
Input:	A graph $G = (V, E)$ and an integer k
Parameter:	k
Question:	Does G have a vertex cover of size at most k ?

Is this a YES-instance for VERTEX COVER? (Is there $S \subseteq V$ with $|S| \le 4$, such that $\forall uv \in E, u \in S$ or $v \in S$?) Exercise 2

Vertex Cover Simplification rules

- Preprocessing algorithm
- 2 Kernelization algorithms
- **3** Kernel for HAMILTONIAN CYCLE
- 4 Kernel for EDGE CLIQUE COVER
- 5 Kernels and Fixed-parameter tractability

6 Further Reading

Simplification rules for **VERTEX** COVER

(Degree-0)

If $\exists v \in V$ such that $d_G(v) = 0$, then set $G \leftarrow G - v$.

Simplification rules for VERTEX COVER

(Degree-0)

If $\exists v \in V$ such that $d_G(v) = 0$, then set $G \leftarrow G - v$.

Proving correctness. A simplification rule is sound if for every instance, it produces an equivalent instance. Two instances I, I' are equivalent if they are both YES-instances or they are both No-instances.

Lemma 1

(Degree-0) is sound.

Simplification rules for $\operatorname{Vertex}\,\operatorname{Cover}$

(Degree-0)

If $\exists v \in V$ such that $d_G(v) = 0$, then set $G \leftarrow G - v$.

Proving correctness. A simplification rule is sound if for every instance, it produces an equivalent instance. Two instances I, I' are equivalent if they are both YES-instances or they are both NO-instances.

Lemma 1

(Degree-0) is sound.

Proof.

First, suppose (G - v, k) is a YES-instance. Let S be a vertex cover for G - v of size at most k. Then, S is also a vertex cover for G since no edge of G is incident to v. Thus, (G, k) is a YES-instance. Now, suppose (G - v, k) is a NO-instance. For the sake of contradiction, assume (G, k) is a YES-instance. Let S be a vertex cover for G of size at most k. But then, $S \setminus \{v\}$ is a vertex cover of size at most k for G - v; a contradiction.

Simplification rules for **VERTEX** COVER

(Degree-1)

If $\exists v \in V$ such that $d_G(v) = 1$, then set $G \leftarrow G - N_G[v]$ and $k \leftarrow k - 1$.

Simplification rules for VERTEX COVER

(Degree-1)

If $\exists v \in V$ such that $d_G(v) = 1$, then set $G \leftarrow G - N_G[v]$ and $k \leftarrow k - 1$.

Lemma 1

(Degree-1) is sound.

Proof.

Let u be the neighbor of v in G. Thus, $N_G[v] = \{u, v\}$. If S is a vertex cover of G of size at most k, then $S \setminus \{u, v\}$ is a vertex cover of $G - N_G[v]$ of size at most k - 1, because $u \in S$ or $v \in S$. If S' is a vertex cover of $G - N_G[v]$ of size at most k - 1, then $S' \cup \{u\}$ is a vertex cover of G of size at most k, since all edges that are in G but not in $G - N_G[v]$ are incident to v. (Large Degree)

If $\exists v \in V$ such that $d_G(v) > k$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

(Large Degree)

If $\exists v \in V$ such that $d_G(v) > k$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

Lemma 1

(Large Degree) is sound.

Proof.

Let S be a vertex cover of G of size at most k. If $v \notin S$, then $N_G(v) \subseteq S$, contradicting that $|S| \leq k$.

Simplification rules for **VERTEX** COVER

(Number of Edges)

If $d_G(v) \leq k$ for each $v \in V$ and $|E| > k^2$ then return No

(Number of Edges)

If $d_G(v) \leq k$ for each $v \in V$ and $|E| > k^2$ then return No

Lemma 1

(Number of Edges) is sound.

Proof.

Assume $d_G(v) \leq k$ for each $v \in V$ and $|E| > k^2$. Suppose $S \subseteq V$, $|S| \leq k$, is a vertex cover of G. We have that S covers at most k^2 edges. However, $|E| \geq k^2 + 1$. Thus, S is not a vertex cover of G.

- Preprocessing algorithm
- 2 Kernelization algorithms
- **3** Kernel for HAMILTONIAN CYCLE
- 4 Kernel for EDGE CLIQUE COVER
- 5 Kernels and Fixed-parameter tractability
- 6 Further Reading

```
VC-preprocess
Input: A graph G and an integer k.
Output: A graph G' and an integer k' such that G has a vertex cover of size
          at most k if and only if G' has a vertex cover of size at most k'.
G' \leftarrow G
k' \leftarrow k
repeat
    Execute simplification rules (Degree-0), (Degree-1), (Large Degree), and
     (Number of Edges) for (G', k')
until no simplification rule applies
return (G', k')
```

- How effective is VC-preprocess?
- We would like to study preprocessing algorithms mathematically and quantify their effectiveness.

• Say that a preprocessing algorithm for a problem II is nice if it runs in polynomial time and for each instance for II, it returns an instance for II that is strictly smaller.

- Say that a preprocessing algorithm for a problem II is nice if it runs in polynomial time and for each instance for II, it returns an instance for II that is strictly smaller.
- $\bullet\,\rightarrow\,\text{executing}$ it a linear number of times reduces the instance to a single bit
- $\bullet \rightarrow$ such an algorithm would solve Π in polynomial time
- For NP-hard problems this is not possible unless P = NP
- We need a different measure of effectiveness

- We will measure the effectiveness in terms of the parameter
- How large is the resulting instance in terms of the parameter?

Lemma 2

For any instance (G, k) for VERTEX COVER, VC-preprocess produces an equivalent instance (G', k') of size $O(k^2)$.

Proof.

Since all simplification rules are sound, (G = (V, E), k) and (G' = (V', E'), k') are equivalent. By (Number of Edges), $|E'| \le (k')^2 \le k^2$. By (Degree-0) and (Degree-1), each vertex in V' has degree at least 2 in G'. Since $\sum_{v \in V'} d_{G'}(v) = 2|E'| \le 2k^2$, this implies that $|V'| \le k^2$.

Thus, $|V'| + |E'| \subseteq O(k^2)$.

Vertex Cover

- Simplification rules
- Preprocessing algorithm

2 Kernelization algorithms

- **3** Kernel for HAMILTONIAN CYCLE
- 4 Kernel for EDGE CLIQUE COVER
- 5 Kernels and Fixed-parameter tractability

6 Further Reading

Definition 3

A kernelization for a parameterized problem Π is a **polynomial time** algorithm, which, for any instance I of Π with parameter k, produces an **equivalent** instance I' of Π with parameter k' such that $|I'| \leq f(k)$ and $k' \leq f(k)$ for a computable function f. We refer to the function f as the size of the kernel.

Note: We do not formally require that $k' \leq k$, but this will be the case for many kernelizations.

Theorem 4

VC-preprocess is a $O(k^2)$ kernelization for VERTEX COVER.

Can we obtain a kernel with fewer vertices? We defer this question for now.

Vertex Cover

- Simplification rules
- Preprocessing algorithm
- 2 Kernelization algorithms
- **3** Kernel for HAMILTONIAN CYCLE
 - 4 Kernel for EDGE CLIQUE COVER
- 5 Kernels and Fixed-parameter tractability

6 Further Reading

A Hamiltonian cycle of G is a subgraph of G that is a cycle on |V(G)| vertices.

vc-HAMILTONIAN CYCLEInput:A graph G = (V, E).Parameter:k = vc(G), the size of a smallest vertex cover of G.Question:Does G have a Hamiltonian cycle?

Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an instance? **Issue**: We do not actually know a vertex cover of size k. We do not even know the value of k (it is not part of the input).

- Obtain a vertex cover using an approximation algorithm. We will use a 2-approximation algorithm, producing a vertex cover of size $\leq 2k$ in polynomial time.
- If C is a vertex cover of size $\leq 2k$, then $I = V \setminus C$ is an independent set of size $\geq |V| 2k$.
- No two consecutive vertices in the Hamiltonian Cycle can be in I.
- A kernel with $\leq 4k$ vertices can now be obtained with the following simplification rule.

(Too-large)

Compute a vertex cover C of size $\leq 2k$ in polynomial time. If 2|C| < |V|, then return No

Vertex Cover

- Simplification rules
- Preprocessing algorithm
- 2 Kernelization algorithms
- **3** Kernel for HAMILTONIAN CYCLE
- 4 Kernel for EDGE CLIQUE COVER
- 5 Kernels and Fixed-parameter tractability

6 Further Reading

Definition 5

An edge clique cover of a graph G = (V, E) is a set of cliques in G covering all its edges. In other words, if $\mathcal{C} \subseteq 2^V$ is an edge clique cover then each $S \in \mathcal{C}$ is a clique in G and for each $\{u, v\} \in E$ there exists an $S \in \mathcal{C}$ such that $u, v \in S$.

Example: $\{\{a, b, c\}, \{b, c, d, e\}\}$ is an edge clique cover for this graph.

Edge Clique Cover

Input:	A graph $G = (V, E)$ and an integer k
Parameter:	k
Question:	Does G have an edge clique cover of size at most k ?

The size of an edge clique cover C is the number of cliques contained in C and is denoted |C|.

Definition 5

A clique S in a graph G is a maximal clique if there is no other clique S' in G with $S \subset S'$.

Lemma 6

A graph G has an edge clique cover C of size at most k if and only if G has an edge clique cover C' of size at most k such that each $S \in C'$ is a maximal clique.

Proof sketch.

(⇒): Replace each clique $S \in C$ by a maximal clique S' with $S \subseteq S'$. (⇐): Trivial, since C' is an edge clique cover of size at most k. **Thought experiment**: Imagine a very large instance where the parameter is tiny. How can you simplify such an instance?

Simplification rules for EDGE CLIQUE COVER II

The instance could have many degree-0 vertices.

(Isolated)

If there exists a vertex $v \in V$ with $d_G(v) = 0$, then set $G \leftarrow G - v$.

Lemma 7

(Isolated) is sound.

Proof sketch.

Since no edge is incident to v, a smallest edge clique cover for G - v is a smallest edge clique cover for G, and vice-versa.
Simplification rules for EDGE CLIQUE COVER II

The instance could have many degree-0 vertices.

(Isolated)

If there exists a vertex $v \in V$ with $d_G(v) = 0$, then set $G \leftarrow G - v$.

Lemma 7

(Isolated) is sound.

Proof sketch.

Since no edge is incident to v, a smallest edge clique cover for G - v is a smallest edge clique cover for G, and vice-versa.

(Isolated-Edge)

If $\exists uv \in E$ such that $d_G(u) = d_G(v) = 1$, then set $G \leftarrow G - \{u, v\}$ and $k \leftarrow k - 1$.

Simplification rules for Edge CLIQUE COVER III

(Twins)

If $\exists u, v \in V$, $u \neq v$, such that $N_G[u] = N_G[v]$, then set $G \leftarrow G - v$.

Lemma 8

(Twins) is sound.

Simplification rules for EDGE CLIQUE COVER III

(Twins)

If $\exists u, v \in V$, $u \neq v$, such that $N_G[u] = N_G[v]$, then set $G \leftarrow G - v$.

Lemma 8

(Twins) is sound.

Proof.

We need to show that G has an edge clique cover of size at most k if and only if G - v has an edge clique cover of size at most k. (\Rightarrow): If C is an edge clique cover of G of size at most k, then $\{S \setminus \{v\} : S \in C\}$ is an edge clique cover of G - v of size at most k. (\Leftarrow): Let C' be an edge clique cover of G - v of size at most k. Partition C' into $C'_u = \{S \in C' : u \in S\}$ and $C'_{\neg u} = C' \setminus C'_u$. Note that each set in $C_u = \{S \cup \{v\} : S \in C'_u\}$ is a clique in G since $N_G[u] = N_G[v]$ and that each edge incident to v is contained in at least one of these cliques. Now, $C_u \cup C'_{\neg u}$ is an edge clique cover of G of size at most k.

Simplification rules for Edge CLIQUE COVER IV

If the previous simplification rules do not apply and $|V| > 2^k$, then return No.

Lemma 9

(Size-V) is sound.

Simplification rules for EDGE CLIQUE COVER IV

(Size-V)

If the previous simplification rules do not apply and $|V| > 2^k$, then return No.

Lemma 9

(Size-V) is sound.

Proof.

For the sake of contradiction, assume neither (Isolated) nor (Twins) are applicable, $|V| > 2^k$, and G has an edge clique cover \mathcal{C} of size at most k. Since $2^{\mathcal{C}}$ (the set of all subsets of \mathcal{C}) has size at most 2^k , and every vertex belongs to at least one clique in \mathcal{C} by (Isolated), we have that there exists two vertices $u, v \in V$ such that $\{S \in \mathcal{C} : u \in S\} = \{S \in \mathcal{C} : v \in S\}$. But then, $N_G[u] = \bigcup_{S \in \mathcal{C} : u \in S} S = \bigcup_{S \in \mathcal{C} : v \in S} S = N_G[v]$, contradicting that (Twin) is not applicable.

Theorem 10

EDGE CLIQUE COVER has a kernel with $O(2^k)$ vertices and $O(4^k)$ edges.

Corollary 11

EDGE CLIQUE COVER *is* FPT.

Outline

Vertex Cover

- Simplification rules
- Preprocessing algorithm
- 2 Kernelization algorithms
- **3** Kernel for HAMILTONIAN CYCLE
- 4 Kernel for EDGE CLIQUE COVER
- 5 Kernels and Fixed-parameter tractability

6 Further Reading

Theorem 12

Let Π be a decidable parameterized problem. Π has a kernelization algorithm $\Leftrightarrow \Pi$ is FPT.

Theorem 12

Let Π be a decidable parameterized problem. Π has a kernelization algorithm $\Leftrightarrow \Pi$ is FPT.

Proof.

 $(\Rightarrow):$ An FPT algorithm is obtained by first running the kernelization, and then any brute-force algorithm on the resulting instance.

(\Leftarrow): Let A be an FPT algorithm for Π with running time $O(f(k)n^c)$.

If f(k) < n, then A has running time $O(n^{c+1})$. In this case, the kernelization algorithm runs A and returns a trivial YES- or NO-instance depending on the answer of A.

Otherwise, $f(k) \ge n$. In this case, the kernelization algorithm outputs the input instance.

Outline

Vertex Cover

- Simplification rules
- Preprocessing algorithm
- 2 Kernelization algorithms
- **3** Kernel for HAMILTONIAN CYCLE
- 4 Kernel for EDGE CLIQUE COVER
- 5 Kernels and Fixed-parameter tractability

6 Further Reading

- Chapter 2, Kernelization in [Cyg+15]
- Chapter 4, Kernelization in [DF13]
- Chapter 7, Data Reduction and Problem Kernels in [Nie06]
- Chapter 9, Kernelization and Linear Programming Techniques in [FG06]
- the new book on kernelization [Fom+19]

References I

- ▶ [Cyg+15] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- [DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
- ► [FG06] Jörg Flum and Martin Grohe. *Parameterized Complexity Theory*. Springer, 2006.
- [Fom+19] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization. Theory of Parameterized Preprocessing. Cambridge University Press, 2019.
- [Nie06] Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.