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Interrupt Recognition and Ack.

⚫ An Interrupt Request (IRQ) may occur at any time.

⚫ It may have rising or falling edges or high or low levels.

⚫ Frequently it is an active-low signal

⚫ multiple devices are wire-ORed together.

▪ Recall open-collector gates

⚫ Signal Conditioning Circuit detects these different 

types of signals.

⚫ Interrupt Request Flip-Flop (IRQ-FF) records the 

interrupt request until it is acknowledged.

⚫ When  IRQ-FF is set, it generates a pending interrupt 

signal that goes towards the Sequence Controller.  

⚫ IRQ-FF is reset when CPU acknowledges the interrupt with 

INTA signal.
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Interrupt Recognition and Ack. 

(cont.)

⚫ Interrupts can be enabled and disabled by software 

instructions, which is supported by the hardware 

Interrupt Enable Flip-Flop (INTE-FF).

⚫ When the INTE-FF is set, all interrupts are enabled 

and the pending interrupt is allowed through the 

AND gate to the sequence controller.

⚫ The INTE-FF is reset in the following cases. 

⚫ CPU acknowledges the interrupt.

⚫ CPU is reset.

⚫ Disable interrupt instruction is executed. 
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Interrupt Recognition and Ack. 

(cont.)

⚫ An interrupt acknowledge signal is generated by the 
CPU when the current instruction has finished 
execution and CPU has detected the IRQ. 
⚫ This resets the IRQ-FF and INTE-FF and signals the 

interrupting device that CPU is ready to execute the 
interrupting device routine.

⚫ At the end of the interrupt service routine, CPU 
executes a return-from-interrupt instruction.
⚫ Part of this instruction’s job is to set the INTE-FF to re-

enable interrupts.

⚫ Nested interrupts can happen If the INTE-FF is set 
during an interrupt service routine
⚫ An interrupt can therefore interrupt interrupting interrupts. 
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Multiple Sources of Interrupts

⚫ To handle multiple sources of interrupts, the 

interrupt system must

⚫ Identify which device has generated the IRQ. 

⚫ Using polling approach

⚫ Using vectoring approach

⚫ Resolve simultaneous interrupt requests

⚫ using prioritization schemes.
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Polled Interrupts

⚫ Software, instead of hardware, is responsible 

for finding the interrupting source.

⚫ The device must have logic to generate the IRQ 

signal and to set an “I did it” bit in a status register 

that is read by CPU. 

⚫ The bit is reset after the register has been read.
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Vectored Interrupts

⚫ CPU’s response to IRQ is to assert INTA.

⚫ The interrupting device uses INTA to place 

information that identifies itself, called the 

vector, onto the data bus for CPU to read.

⚫ CPU uses the vector to execute the interrupt 

service routine.
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Multiple Interrupt Masking

⚫ CPU has multiple IRQ input pins.

⚫ Masking enables some interrupts and 

disables other interrupts

⚫ CPU designers reserve specific memory 

locations for a vector associated with each 

IRQ line.

⚫ Individual disable/enable bit is assigned to 

each interrupting source. 
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Interrupt Priorities

⚫ When multiple interrupts occur at the same 

time, which one will be serviced first?

⚫ Two resolution approaches:

⚫ Software resolution

⚫ Polling software determines which interrupting source 

is serviced first.

⚫ Hardware resolution

⚫ Daisy chain.

⚫ Others
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Daisy Chain Priority 
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Daisy Chain Priority 

Resolution (cont.)

⚫ CPU asserts INTA that is passed down the 

chain from device to device. The higher-

priority device is closer to CPU.  

⚫ When the INTA reaches a device that 

generated the IRQ,  that device puts its 

vector on the data bus and does not pass 

along the INTA. So lower-priority devices 

do NOT receive the INTA.  
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Other Priority Resolutions

⚫ Separate IRQ Lines.

⚫ Each IRQ line is assigned a fixed priority. For 

example, IRQ0 has higher priority than IRQ1 and 

IRQ1 has higher priority than IRQ2 and so on.  

⚫ Hierarchical Prioritization.

⚫ Higher priory interrupts are allowed while lower 

ones are masked.

⚫ Nonmaskable Interrupts.

⚫ Cannot be disabled.

⚫ Used for important events such as power failure.
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Non-Nested Interrupts

⚫ Interrupt service routines cannot be 

interrupted by another interrupt. 
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Nested Interrupts

⚫ Interrupt service routines can be interrupted 

by another interrupt.
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RESET in Mega2560

⚫ The ATmega2560 has five sources of reset:

⚫ Power-on Reset. 

⚫ The MCU is reset when the supply voltage is below 

the Power-on Reset threshold (VPOT).

⚫ External Reset. 

⚫ The MCU is reset when a low level is present on the 

RESET pin for longer than the minimum pulse length.

⚫ Watchdog Reset. 

⚫ The MCU is reset when the Watchdog Timer period 

expires and the Watchdog is enabled.
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RESET in Mega2560 (Cont.)

⚫ Brown-out Reset.  

⚫ The MCU is reset when the supply voltage VCC is 

below the Brown-out Reset threshold (VBOT) and the 

Brown-out Detector is enabled.

⚫ JTAG AVR Reset. 

⚫ The MCU is reset as long as there is a logic one in the 

Reset Register, one of the scan chains of the JTAG 

system. 

⚫ For each reset, there is a flag (bit) in MCU 

Control and State Register MCUCSR.

⚫ These bits are used to determine the source of 

the RESET interrupt. 
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RESET Logic in Mega2560 
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Atmega2560 Pin Configuration

Source: Atmega2560 Data Sheet
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Watchdog Timer

⚫ A peripheral I/O device on the microcontroller. 

⚫ It is really a counter that is clocked from a separate 

On-chip Oscillator (122 kHz at Vcc=5V)

⚫ It can be controlled to produce different time 

intervals

⚫ 8 different periods determined by WDP2, WDP1 and 

WDP0 bits in WDTCSR.

⚫ Can be enabled or disabled by properly updating 

WDCE bit and WDE bit in Watchdog Timer Control 

Register WDTCSR.
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Watchdog Timer (cont.) 

⚫ Often used to detect software crash.

⚫ If enabled, it generates a Watchdog Reset 

interrupt when its period expires.

⚫ When its period expires, Watchdog Reset Flag WDRF 

in MCU Control Register MCUCSR is set.

▪ This flag is used to determine if the watchdog timer has 

generated a RESET interrupt.

⚫ Program needs to reset it before its period expires 

by executing instruction WDR.
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Watchdog Timer Diagram

Source: Atmega2560 Data Sheet
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Watchdog Timer Control 

Register

⚫ WDTCSR is used to control the scale of the 

watchdog timer. It is an MM I/O register in 

AVR

Source: Atmega2560 Data Sheet
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WDTCSR Bit Definition

⚫ Bit 7 – WDIF - Watchdog interrupt flag

⚫ Bit 6 – WDIE - Watchdog interrupt enable

⚫ Bit 4

⚫ WDCE - Watchdog change enable
⚫ Should be set before any changes to be made

⚫ Bit 3

⚫ WDE - Watchdog enable
⚫ Set to enable watchdog; clear to disable the watchdog 

⚫ Bits 5,2-0
⚫ Prescaler 

⚫ Named WDP3, WDP2, WDP1, WPD0
▪ Determine the watchdog time reset intervals
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Watchdog Timer Prescale

Source: Atmega64 Data Sheet
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Examples

⚫ Enable watchdog

; Write logical one to WDE

ldi r16, (1<<WDE)
sts WDTCSR, r16
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Examples

⚫ Disable watchdog

⚫ Refer to the data sheet

; Write logical one to WDCE and WDE

ldi r16, (1<<WDCE)|(1<<WDE)
sts WDTCSR, r16

; Turn off WDT
ldi r16, (0<<WDE)
sts WDTCSR, r16
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Examples

⚫ Select a prescale 

⚫ Refer to the data sheet

; Write logical one to WDCE and WDE

ldi r16, (1<<WDCE)|(1<<WDE)
sts WDTCSR, r16

; set time-out as 1 second
ldi r16, (1<<WDP2)|(1<<WDP1)
sts WDTCSR, r16
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Watchdog Reset

⚫ Syntax:           wdr

⚫ Operands:      none

⚫ Operation:      reset the watchdog timer.

⚫ Words:            1 

⚫ Cycles:            1
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Example 

⚫ The program in the next slide is not robust. 

May lead to a crash. Why? How to detect the 

crash?
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; The program returns the length of a string.  

.include "m2560def.inc"

.def i=r15 ; store the string length when execution finishes.

.def c=r16 ; store s[i], a string character    

.cseg

main:
ldi ZL, low(s<<1)
ldi ZH, high(s<<1)
clr i
lpm c, z+

loop:
cpi c, 0
breq endloop
inc i
lpm c, Z+
rjmp loop

endloop:…

s: .db “hello, world”
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Reading Material

⚫ Chapter 8: Interrupts and Real-Time Events. 

Microcontrollers and Microcomputers by 

Fredrick M. Cady.

⚫ Mega2560 Data Sheet.  

⚫ System Control and Reset. 

⚫ Watchdog Timer.

⚫ Interrupts. 
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Homework

1. Refer to the AVR Instruction Set manual, 

study the following instructions:

⚫ Bit operations

⚫ sei, cli

⚫ sbi, cbi

⚫ MCU control instructions

⚫ wdr
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Homework 

1. What is the function of the following code?
; Write logical one to WDCE and WDE

ldi r16, (1<<WDCE)|(1<<WDE)
sts WDTCSR, r16

; set time-out as 2.1 second
ldi r16, (1<<WDP2)|(1<<WDP1)|(1<<WDP0)
sts WDTCSR, r16

; enable watchdog
ldi r16, (1<<WDE)
sts WDTCSR, r16

loop: oneSecondDelay ; macro for one second delay
wdr
rjmp loop
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Homework

2. How an I/O device signals the 

microprocessor that it needs service?
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Homework

3. Why do you need software to disable 

interrupts (except for the non-maskable 

interrupts)?


