
1

Interrupts (Filling

in the rest!)

Lecturer: Sri Parameswaran

Notes by: Annie Guo

9

Interrupt Recognition and

Acknowledgement Hardware

Interrupt signal to

sequence

controller

Interrupt ack from

sequence

controller

SEQUENCE

CONTROLLER

Disable interrupt

instruction

Enable interrupt

instruction

Return from

interrupt

instruction

INTERR-

UPTING

DEVICE

Signal

conditioning

IRQ-FF

Set

Reset

INTE-FF

Set

Reset

IRQ

Interrupt

Enable

CPU

Pending

Interrupt

10

Interrupt Recognition and Ack.

⚫ An Interrupt Request (IRQ) may occur at any time.

⚫ It may have rising or falling edges or high or low levels.

⚫ Frequently it is an active-low signal

⚫ multiple devices are wire-ORed together.

▪ Recall open-collector gates

⚫ Signal Conditioning Circuit detects these different

types of signals.

⚫ Interrupt Request Flip-Flop (IRQ-FF) records the

interrupt request until it is acknowledged.

⚫ When IRQ-FF is set, it generates a pending interrupt

signal that goes towards the Sequence Controller.

⚫ IRQ-FF is reset when CPU acknowledges the interrupt with

INTA signal.

11

Interrupt Recognition and Ack.

(cont.)

⚫ Interrupts can be enabled and disabled by software

instructions, which is supported by the hardware

Interrupt Enable Flip-Flop (INTE-FF).

⚫ When the INTE-FF is set, all interrupts are enabled

and the pending interrupt is allowed through the

AND gate to the sequence controller.

⚫ The INTE-FF is reset in the following cases.

⚫ CPU acknowledges the interrupt.

⚫ CPU is reset.

⚫ Disable interrupt instruction is executed.

12

Interrupt Recognition and Ack.

(cont.)

⚫ An interrupt acknowledge signal is generated by the
CPU when the current instruction has finished
execution and CPU has detected the IRQ.
⚫ This resets the IRQ-FF and INTE-FF and signals the

interrupting device that CPU is ready to execute the
interrupting device routine.

⚫ At the end of the interrupt service routine, CPU
executes a return-from-interrupt instruction.
⚫ Part of this instruction’s job is to set the INTE-FF to re-

enable interrupts.

⚫ Nested interrupts can happen If the INTE-FF is set
during an interrupt service routine
⚫ An interrupt can therefore interrupt interrupting interrupts.

13

Multiple Sources of Interrupts

⚫ To handle multiple sources of interrupts, the

interrupt system must

⚫ Identify which device has generated the IRQ.

⚫ Using polling approach

⚫ Using vectoring approach

⚫ Resolve simultaneous interrupt requests

⚫ using prioritization schemes.

14

Polled Interrupts

⚫ Software, instead of hardware, is responsible

for finding the interrupting source.

⚫ The device must have logic to generate the IRQ

signal and to set an “I did it” bit in a status register

that is read by CPU.

⚫ The bit is reset after the register has been read.

15

Device generates

IRQ

CPU polls

status registers

of all devices

CPU found

the interrupting device

CPU executes

the service routine

for that device

SW

Polled Interrupts Execution

Flow

16

Polled Interrupt Logic

Logic to

generate IRQ

Logic to reset IRQ

when status

register is read

Logic to read

status register and

reset “I did it” bit

Logic to set “I

did it” bit

Status register

Data

Address

Control

IRQ

17

Vectored Interrupts

⚫ CPU’s response to IRQ is to assert INTA.

⚫ The interrupting device uses INTA to place

information that identifies itself, called the

vector, onto the data bus for CPU to read.

⚫ CPU uses the vector to execute the interrupt

service routine.

18

Vectored Interrupting Device

Hardware

Logic to

generate IRQ

Logic to reset

IRQ

Vector Information

Three-State Driver

Data

Address

Control

INTA

IRQ

HW

19

Multiple Interrupt Masking

⚫ CPU has multiple IRQ input pins.

⚫ Masking enables some interrupts and

disables other interrupts

⚫ CPU designers reserve specific memory

locations for a vector associated with each

IRQ line.

⚫ Individual disable/enable bit is assigned to

each interrupting source.

20

Multiple Interrupt Masking

Circuit

CPU

•••

IRQ 0

IRQ 1

IRQ 2

IRQ n

21

Interrupt Priorities

⚫ When multiple interrupts occur at the same

time, which one will be serviced first?

⚫ Two resolution approaches:

⚫ Software resolution

⚫ Polling software determines which interrupting source

is serviced first.

⚫ Hardware resolution

⚫ Daisy chain.

⚫ Others

22

Selection

Algorithm

Device generates

IRQ

CPU polls

status registers

of all devices

CPU found

the interrupting device

CPU executes

the service routine

for that device

SW

Software Resolution

23

Daisy Chain Priority

Resolution

CPU Device 1 Device 2 Device n• • •

IRQ

INTA INTA INTA INTA

Data

Address

Control

24

Daisy Chain Priority

Resolution (cont.)

⚫ CPU asserts INTA that is passed down the

chain from device to device. The higher-

priority device is closer to CPU.

⚫ When the INTA reaches a device that

generated the IRQ, that device puts its

vector on the data bus and does not pass

along the INTA. So lower-priority devices

do NOT receive the INTA.

25

Other Priority Resolutions

⚫ Separate IRQ Lines.

⚫ Each IRQ line is assigned a fixed priority. For

example, IRQ0 has higher priority than IRQ1 and

IRQ1 has higher priority than IRQ2 and so on.

⚫ Hierarchical Prioritization.

⚫ Higher priory interrupts are allowed while lower

ones are masked.

⚫ Nonmaskable Interrupts.

⚫ Cannot be disabled.

⚫ Used for important events such as power failure.

31

Non-Nested Interrupts

⚫ Interrupt service routines cannot be

interrupted by another interrupt.

Main

program

Interrupt

service

routine

32

Nested Interrupts

⚫ Interrupt service routines can be interrupted

by another interrupt.

Main

program

ISR1

ISR2

ISR3

45

RESET in Mega2560

⚫ The ATmega2560 has five sources of reset:

⚫ Power-on Reset.

⚫ The MCU is reset when the supply voltage is below

the Power-on Reset threshold (VPOT).

⚫ External Reset.

⚫ The MCU is reset when a low level is present on the

RESET pin for longer than the minimum pulse length.

⚫ Watchdog Reset.

⚫ The MCU is reset when the Watchdog Timer period

expires and the Watchdog is enabled.

46

RESET in Mega2560 (Cont.)

⚫ Brown-out Reset.

⚫ The MCU is reset when the supply voltage VCC is

below the Brown-out Reset threshold (VBOT) and the

Brown-out Detector is enabled.

⚫ JTAG AVR Reset.

⚫ The MCU is reset as long as there is a logic one in the

Reset Register, one of the scan chains of the JTAG

system.

⚫ For each reset, there is a flag (bit) in MCU

Control and State Register MCUCSR.

⚫ These bits are used to determine the source of

the RESET interrupt.

47

RESET Logic in Mega2560

48

Atmega2560 Pin Configuration

Source: Atmega2560 Data Sheet

49

50

Watchdog Timer

⚫ A peripheral I/O device on the microcontroller.

⚫ It is really a counter that is clocked from a separate

On-chip Oscillator (122 kHz at Vcc=5V)

⚫ It can be controlled to produce different time

intervals

⚫ 8 different periods determined by WDP2, WDP1 and

WDP0 bits in WDTCSR.

⚫ Can be enabled or disabled by properly updating

WDCE bit and WDE bit in Watchdog Timer Control

Register WDTCSR.

51

Watchdog Timer (cont.)

⚫ Often used to detect software crash.

⚫ If enabled, it generates a Watchdog Reset

interrupt when its period expires.

⚫ When its period expires, Watchdog Reset Flag WDRF

in MCU Control Register MCUCSR is set.

▪ This flag is used to determine if the watchdog timer has

generated a RESET interrupt.

⚫ Program needs to reset it before its period expires

by executing instruction WDR.

52

Watchdog Timer Diagram

Source: Atmega2560 Data Sheet

53

Watchdog Timer Control

Register

⚫ WDTCSR is used to control the scale of the

watchdog timer. It is an MM I/O register in

AVR

Source: Atmega2560 Data Sheet

54

WDTCSR Bit Definition

⚫ Bit 7 – WDIF - Watchdog interrupt flag

⚫ Bit 6 – WDIE - Watchdog interrupt enable

⚫ Bit 4

⚫ WDCE - Watchdog change enable
⚫ Should be set before any changes to be made

⚫ Bit 3

⚫ WDE - Watchdog enable
⚫ Set to enable watchdog; clear to disable the watchdog

⚫ Bits 5,2-0
⚫ Prescaler

⚫ Named WDP3, WDP2, WDP1, WPD0
▪ Determine the watchdog time reset intervals

55

Watchdog Timer Prescale

Source: Atmega64 Data Sheet

56

Examples

⚫ Enable watchdog

; Write logical one to WDE

ldi r16, (1<<WDE)
sts WDTCSR, r16

57

Examples

⚫ Disable watchdog

⚫ Refer to the data sheet

; Write logical one to WDCE and WDE

ldi r16, (1<<WDCE)|(1<<WDE)
sts WDTCSR, r16

; Turn off WDT
ldi r16, (0<<WDE)
sts WDTCSR, r16

58

Examples

⚫ Select a prescale

⚫ Refer to the data sheet

; Write logical one to WDCE and WDE

ldi r16, (1<<WDCE)|(1<<WDE)
sts WDTCSR, r16

; set time-out as 1 second
ldi r16, (1<<WDP2)|(1<<WDP1)
sts WDTCSR, r16

59

Watchdog Reset

⚫ Syntax: wdr

⚫ Operands: none

⚫ Operation: reset the watchdog timer.

⚫ Words: 1

⚫ Cycles: 1

60

Example

⚫ The program in the next slide is not robust.

May lead to a crash. Why? How to detect the

crash?

61

; The program returns the length of a string.

.include "m2560def.inc"

.def i=r15 ; store the string length when execution finishes.

.def c=r16 ; store s[i], a string character

.cseg

main:
ldi ZL, low(s<<1)
ldi ZH, high(s<<1)
clr i
lpm c, z+

loop:
cpi c, 0
breq endloop
inc i
lpm c, Z+
rjmp loop

endloop:…

s: .db “hello, world”

62

Reading Material

⚫ Chapter 8: Interrupts and Real-Time Events.

Microcontrollers and Microcomputers by

Fredrick M. Cady.

⚫ Mega2560 Data Sheet.

⚫ System Control and Reset.

⚫ Watchdog Timer.

⚫ Interrupts.

63

Homework

1. Refer to the AVR Instruction Set manual,

study the following instructions:

⚫ Bit operations

⚫ sei, cli

⚫ sbi, cbi

⚫ MCU control instructions

⚫ wdr

64

Homework

1. What is the function of the following code?
; Write logical one to WDCE and WDE

ldi r16, (1<<WDCE)|(1<<WDE)
sts WDTCSR, r16

; set time-out as 2.1 second
ldi r16, (1<<WDP2)|(1<<WDP1)|(1<<WDP0)
sts WDTCSR, r16

; enable watchdog
ldi r16, (1<<WDE)
sts WDTCSR, r16

loop: oneSecondDelay ; macro for one second delay
wdr
rjmp loop

65

Homework

2. How an I/O device signals the

microprocessor that it needs service?

66

Homework

3. Why do you need software to disable

interrupts (except for the non-maskable

interrupts)?

