
COMP9020 Lecture 5
Session 2, 2017

Logic

-5

Lecture 4 recap: Graphs

Basic definitions: Degree, (Simple, closed) paths, cycles

Trees, Complete (k-partite) graphs: Kn, Km,n, Km,n,p, ...

Eulerian paths and circuits

Hamiltonian paths and circuits

Graph colouring, chromatic number χ(G)

Cliques, clique number κ(G)

Planarity

-4

Example: Planar

-3

Example: Clique number κ(G) = 4

-2

Example: Chromatic number χ(G) = 4

-1

COMP9020 Lecture 5
Session 2, 2017

Logic

Textbook (R & W) – Ch. 2, Sec. 2.1-2.5;
Ch. 10, Sec. 10.1-10.3

Problem sets 5 and 6

Supplementary Exercises Ch. 2 and 10 (R & W)

Guidelines for good mathematical writing

0

Overview

what’s a proof?

from English to propositional logic

truth tables, validity, satisfiability and entailment

applications: program logic, constraint satisfaction problems,
reasoning about specifications, digital circuits

proof methods

generalisation: Boolean algebras

1

Proofs

A mathematical proof of a proposition p is a chain of logical
deductions leading to p from a base set of axioms.

Example

Proposition: Every group of 6 people includes a group of 3 who
each have met each other or a group of 3 who have not met a
single other person in that group.
Proof: by case analysis.

But what are propositions, logical deductions, and axioms? And
what is a sound case analysis?

2

The Real World vs Symbols

symbols symbols

world world

symbolic manipulation

relationship

physical operation

relationship

NB

“Essentially, all models are wrong. But some are useful.” (G. Box)

3

The main relationship between symbols and the world of concern
in logic is that of a sentence of a language being true in the world.
A sentence of a natural language (like English, Cantonese,
Warlpiri) is declarative, or a proposition, if it can be meaningfully
be said to be either true or false.

Examples

Richard Nixon was president of Ecuador.

A square root of 16 is 4.

Euclid’s program gets stuck in an infinite loop if you input 0.

Whatever list of numbers you give as input to this program, it
outputs the same list but in increasing order.

xn + yn = zn has no nontrivial integer solutions for n > 2.

3 divides 24.

K5 is planar.

4

The following are not declarative sentences:

Gubble gimble goo

For Pete’s sake, take out the garbage!

Did you watch MediaWatch last week?

Please waive the prerequisites for this subject for me.

x divides y . — R(x , y)

x = 3 and x divides 24. — P(x)

5

The following are not declarative sentences:

Gubble gimble goo

For Pete’s sake, take out the garbage!

Did you watch MediaWatch last week?

Please waive the prerequisites for this subject for me.

x divides y . — R(x , y)

x = 3 and x divides 24. — P(x)

6

Declarative sentences in natural languages can be compound
sentences, built out of other sentences.
Propositional Logic is a formal representation of some
constructions for which the truth value of the compound sentence
can be determined from the truth value of its components.

Chef is a bit of a Romeo and Kenny is always getting killed.

Either Bill is a liar or Hillary is innocent of Whitewater.

It is not the case that this program always halts.

7

Not all constructions of natural language are truth-functional:

Obama believes that Iran is developing nukes.

Chef said they killed Kenny.

This program always halts because it contains no loops.

The disk crashed after I saved my file.

NB

Various modal logics extend classical propositional logic to
represent, and reason about, these and other constructions.

8

The Three Basic Connectives of Propositional Logic

symbol text
∧ “and”, “but”, “;”, “:”
∨ “or”, “either . . . or . . . ”
¬ “not”, “it is not the case that”

Truth tables:

A B A ∧ B

F F F
F T F
T F F
T T T

A B A ∨ B

F F F
F T T
T F T
T T T

A ¬ A

F T
T F

9

Applications I: Program Logic

Example

if x > 0 or (x <= 0 and y > 100):

Let p
def
= (x > 0) and q

def
= (y > 100)

p ∨ (¬p ∧ q)

p q ¬p ¬p ∧ q p ∨ (¬p ∧ q)

F F T F F
F T T T T
T F F F T
T T F F T

This is equivalent to p ∨ q. Hence the code can be simplified to

if x > 0 or y > 100:

10

Somewhat more controversially, consider the following
constructions:

if A then B

A only if B

B if A

A implies B

it follows from A that B

whenever A, B

A is a sufficient condition for B

B is a necessary condition for A

Each has the property that if the whole statement is true, and A is
true, then B is true.

11

We can approximate the English meaning of these by
“not (A and not B)”, written A→ B, which has the following
truth table:

A B A → B

F F
F T
T F F
T T T

12

How to interpret A→ B when A is false?

E.g. “If I am the president of Australia, then I have blue eyes”

“All presidents of Australia have blue eyes” vs.
“All presidents of Australia do not have blue eyes”

“If false then true” and “If false then false” are vacuously
true

13

How to interpret A→ B when A is false?

E.g. “If I am the president of Australia, then I have blue eyes”

“All presidents of Australia have blue eyes” vs.
“All presidents of Australia do not have blue eyes”

“If false then true” and “If false then false” are vacuously
true

14

How to interpret A→ B when A is false?

E.g. “If I am the president of Australia, then I have blue eyes”

“All presidents of Australia have blue eyes” vs.
“All presidents of Australia do not have blue eyes”

“If false then true” and “If false then false” are vacuously
true

15

We can approximate the English meaning of these by
“not (A and not B)”, written A→ B, which has the following
truth table:

A B A → B

F F T
F T T
T F F
T T T

While only an approximation to the English, 100+ years of
experience have shown this to be adequate for capturing
mathematical reasoning.
(Moral: mathematical reasoning does not need all the features of
English.)

16

Examples

LLM: Problem 3.2

p = “you get an HD on your final exam”
q = “you do every exercise in the book”
r = “you get an HD in the course”

Translate into logical notation:

(a) You get an HD in the course although you do not do every
exercise in the book.

(c) To get an HD in the course, you must get an HD on the exam.

(d) You get an HD on your exam, but you don’t do every exercise
in this book; nevertheless, you get an HD in this course.

17

Examples

LLM: Problem 3.2

p = “you get an HD on your final exam”
q = “you do every exercise in the book”
r = “you get an HD in the course”

Translate into logical notation:

(a) You get an HD in the course although you do not do every
exercise in the book. r ∧ ¬q

(c) To get an HD in the course, you must get an HD on the exam.
r → p

(d) You get an HD on your exam, but you don’t do every exercise
in this book; nevertheless, you get an HD in this course.
p ∧ ¬q ∧ r

18

Unless

A unless B can be approximated as ¬B → A

E.g.
I go swimming unless it rains = If it is not raining I go swimming.
Correctness of the translation is perhaps easier to see in:
I don’t go swimming unless the sun shines = If the sun does not
shine then I don’t go swimming.

Note that “I go swimming unless it rains, but sometimes I swim
even though it is raining” makes sense, so the translation of “A
unless B” should not imply B → ¬A.

19

Just in case

A just in case B usually means A if, and only if, B; written A↔ B

The program terminates just in case the input is a positive number.
= The program terminates if, and only if, the input is positive.

I will have an entree just in case I won’t have desert.
= If I have desert I will not have an entree and vice versa.

It has the following truth table:

A B A ↔ B

F F T
F T F
T F F
T T T

Same as (A→ B) ∧ (B → A)

20

Propositional Logic as a Formal Language

Let Prop = {p, q, r , . . .} be a set of basic propositional letters.
Consider the alphabet

Σ = Prop ∪ {>,⊥,¬,∧,∨,→,↔, (,)}

The set of formulae of propositional logic is the smallest set of
words over Σ such that

>, ⊥ and all elements of Prop are formulae

If φ is a formula, then so is ¬φ
If φ and ψ are formulae, then so are (φ ∧ ψ), (φ ∨ ψ),
(φ→ ψ), and (φ↔ ψ).

Convention: we often drop parentheses when there is no ambiguity.
¬ binds more tightly than ∧ and ∨, which in turn bind more
tightly than → and ↔.

21

Logical Equivalence

Two formulas φ, ψ are logically equivalent, denoted φ ≡ ψ if they
have the same truth value for all values of their basic propositions.

Application: If φ and ψ are two formulae such that φ ≡ ψ, then
the digital circuits corresponding to φ and ψ compute the same
function. Thus, proving equivalence of formulas can be used to
optimise circuits.

22

Some Well-Known Equivalences

Excluded Middle p ∨ ¬p ≡ >
Contradiction p ∧ ¬p ≡ ⊥

Identity p ∨ ⊥ ≡ p
p ∧ > ≡ p
p ∨ > ≡ >
p ∧ ⊥ ≡ ⊥

Idempotence p ∨ p ≡ p
p ∧ p ≡ p

Double Negation ¬¬p ≡ p
Commutativity p ∨ q ≡ q ∨ p

p ∧ q ≡ q ∧ p

23

Associativity (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

Distribution p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

De Morgan’s laws ¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

Implication p → q ≡ ¬p ∨ q
p ↔ q ≡ (p → q) ∧ (q → p)

24

Example

((r ∧ ¬p) ∨ (r ∧ q)) ∨ ((¬r ∧ ¬p) ∨ (¬r ∧ q))
≡ (r ∧ (¬p ∨ q)) ∨ (¬r ∧ (¬p ∨ q)) Distrib.
≡ (r ∨ ¬r) ∧ (¬p ∨ q) Distrib.
≡ > ∧ (¬p ∨ q) Excl. Mid.
≡ ¬p ∨ q Ident.

25

Examples

2.2.18 Prove or disprove:
(a) p → (q → r) ≡ (p → q)→ (p → r)
(c) (p → q)→ r ≡ p → (q → r)

26

Examples

2.2.18 Prove or disprove:
(a) (p → q)→ (p → r)

≡ ¬(p → q) ∨ (¬p ∨ r)
≡ (p ∧ ¬q) ∨ ¬p ∨ r
≡ (p ∨ ¬p ∨ r) ∧ (¬q ∨ ¬p ∨ r)
≡ > ∧ (¬p ∨ ¬q ∨ r)
≡ p → (¬q ∨ r)
≡ p → (q → r)

(c) (p → q)→ r ≡ p → (q → r)
Counterexample:
p q r (p → q)→ r p → (q → r)

F T F F T

27

Satisfiability of Formulas

A formula is satisfiable, if it evaluates to T for some assignment
of truth values to its basic propositions.

Example

A B ¬(A→ B)

F F F
F T F
T F T
T T F

28

Applications II: Constraint Satisfaction Problems

These are problems such as timetabling, activity planning, etc.
Many can be understood as showing that a formula is satisfiable.

Example

You are planning a party, but your friends are a bit touchy about
who will be there.

1 If John comes, he will get very hostile if Sarah is there.

2 Sarah will only come if Kim will be there also.

3 Kim says she will not come unless John does.

Who can you invite without making someone unhappy?

29

Translation to logic: let J, S ,K represent “John (Sarah, Kim)
comes to the party”. Then the constraints are:

1 J → ¬S
2 S → K

3 K → J

Thus, for a successful party to be possible, we want the formula
φ = (J → ¬S) ∧ (S → K) ∧ (K → J) to be satisfiable.
Truth values for J, S ,K making this true are called satisfying
assignments, or models.

30

We figure out where the conjuncts are false, below. (so blank = T)
J K S J → ¬S S → K K → J φ

F F F
F F T F F
F T F F F
F T T F F
T F F
T F T F F F
T T F
T T T F F

Conclusion: a party satisfying the constraints can be held. Invite
nobody, or invite John only, or invite Kim and John.

31

Exercise

2.7.14 (supp)

Which of the following formulae are always true?

(a) (p ∧ (p → q)) → q — always true

(b) ((p ∨ q) ∧ ¬p) → ¬q — not always true

(e) ((p → q) ∨ (q → r)) → (p → r) — not always true

(f) (p ∧ q)→ q — always true

32

Exercise

2.7.14 (supp)

Which of the following formulae are always true?

(a) (p ∧ (p → q)) → q — always true

(b) ((p ∨ q) ∧ ¬p) → ¬q — not always true

(e) ((p → q) ∨ (q → r)) → (p → r) — not always true

(f) (p ∧ q)→ q — always true

33

Validity, Entailment, Arguments

An argument consists of a set of declarative sentences called
premises and a declarative sentence called the conclusion.

Example

Premises: Frank took the Ford or the Toyota.
If Frank took the Ford he will be late.
Frank is not late.

Conclusion: Frank took the Toyota

34

An argument is valid if the conclusions are true whenever all the
premises are true. Thus: if we believe the premises, we should also
believe the conclusion.
(Note: we don’t care what happens when one of the premises is
false.)
Other ways of saying the same thing:

The conclusion logically follows from the premises.

The conclusion is a logical consequence of the premises.

The premises entail the conclusion.

35

The argument above is valid. The following is invalid:

Example

Premises: Frank took the Ford or the Toyota.
If Frank took the Ford he will be late.
Frank is late.

Conclusion: Frank took the Ford.

36

For arguments in propositional logic, we can capture validity as
follows:
Let φ1, . . . , φn and φ be formulae of propositional logic. Draw a
truth table with columns for each of φ1, . . . , φn and φ.
The argument with premises φ1, . . . , φn and conclusion φ is valid,
denoted

φ1, . . . , φn |= φ

if in every row of the truth table where φ1, . . . , φn are all true, φ is
true also.

37

We mark only true locations (blank = F)
Frd Tyta Late Frd ∨ Tyta Frd → Late ¬Late Tyta

F F F T T
F F T T
F T F T T T T
F T T T T T
T F F T T
T F T T T
T T F T T T
T T T T T T

This shows Frd ∨ Tyta, Frd → Late, ¬Late |= Tyta

38

The following row shows Frd ∨ Tyta, Frd → Late, Late 6|= Frd
Frd Tyta Late Frd ∨ Tyta Frd → Late Late Frd

F T T T T T F

39

Applications III:
Reasoning About Requirements/Specifications

Suppose a set of English language requirements R for a
software/hardware system can be formalised by a set of formulae
{φ1, . . . φn}.
Suppose C is a statement formalised by a formula ψ. Then

1 The requirements cannot be implemented if φ1 ∧ . . . ∧ φn is
not satisfiable.

2 If φ1, . . . φn |= ψ then every correct implementation of the
requirements R will be such that C is always true in the
resulting system.

3 If φ1, . . . φn−1 |= φn, then the condition φn of the specification
is redundant and need not be stated in the specification.

40

Example

Requirements R: A burglar alarm system for a house is to operate
as follows. The alarm should not sound unless the system has been
armed or there is a fire. If the system has been armed and a door
is disturbed, the alarm should ring. Irrespective of whether the
system has been armed, the alarm should go off when there is a
fire.
Conclusion C: If the alarm is ringing and there is no fire, then the
system must have been armed.
Questions

1 Will every system correctly implementing requirements R
satisfy C?

2 Is the final sentence of the requirements redundant?

41

Expressing the requirements as formulas of propositional logic,
with

S = the alarm sounds = the alarm rings

A = the system is armed

D = a door is disturbed

F = there is a fire

we get
Requirements:

1 S → (A ∨ F)

2 (A ∧ D)→ S

3 F → S

Conclusion: (S ∧ ¬F)→ A

42

Our two questions then correspond to

1 Does S → (A∨F), (A∧D)→ S , F → S |= (S ∧¬F)→ A ?

2 Does S → (A ∨ F), (A ∧ D)→ S |= F → S ?

Answers: problem set 2, exercise 2

43

Validity of Formulas

A formula φ is valid, or a tautology, denoted |= φ, if it evaluates
to T for all assignments of truth values to its basic propositions.

Example

A B (A→ B)→ (¬B → ¬A)

F F T
F T T
T F T
T T T

44

Validity, Equivalence and Entailment

Theorem

The following are equivalent:

φ1, . . . φn |= ψ

|= (φ1 ∧ . . . ∧ φn)→ ψ

|= φ1 → (φ2 → . . . (φn → ψ) . . .)

Theorem

φ ≡ ψ if and only if |= φ↔ ψ

45

Quantifiers

We’ve made quite a few statements of the kind

“If there exists a satisfying assignment . . . ”

or

“Every natural number greater than 2 . . . ”

without formally capturing these quantitative aspects.

Notation: ∀ means “for all” and ∃ means “there exist(s)”

Example

Goldbach’s conjecture

∀n ∈ 2N (n > 2→ ∃p, q ∈ N (p, q ∈ Primes ∧ n = p + q))

46

Proof Rules and Methods:
Proof of the Contrapositive

We want to prove A→ B.
To prove it, we show ¬B → ¬A and invoke the equivalence
(A→ B) ≡ (¬B → ¬A).

Example

∀m, n ∈ N (m + n ≥ 73 → m ≥ 37 ∨ n ≥ 37)

47

Proof Rules and Methods:
Proof by Contradiction

We want to prove A.
To prove it, we assume ¬A, and derive both B and ¬B for some
proposition B.
(Hard part: working out what B should be.)

Examples
√

2 is irrational

There exist an infinite number of primes

48

Proof Rules and Methods:
Proof by Cases

We want to prove that A. To prove it, we find a set of cases
B1,B2, . . . ,Bn such that

1 B1 ∨ . . . ∨ Bn, and

2 Bi → A for each i = 1..n.

(Hard Part: working out what the Bi should be.)
(Comment: often n = 2 and B2 = ¬B1, so B1 ∨ B2 = B1 ∨ ¬B1

holds trivially.)

Example

|x + y | ≤ |x |+ |y | for all x , y ∈ R.
Recall:

|x | =

{
x if x ≥ 0
−x if x < 0

49

Substitution
Substitution is the process of replacing every occurrence of some
symbol by an expression.

Examples

The result of substituting 3 for x in

x2 + 7y = 2xz

is
32 + 7y = 2 · 3 · z

The result of substituting 2k + 3 for x in

x2 + 7y = 2xz

is
(2k + 3)2 + 7y = 2 · (2k + 3) · z

50

We can substitute logical expressions for logical variables:

Example

The result of substituting P ∧ Q for A in

(A ∧ B)→ A

is
((P ∧ Q) ∧ B)→ (P ∧ Q)

51

Substitution Rules

(a) If we substitute an expression for all occurrences of a logical
variable in a tautology then the result is still a tautology.

If |= φ(P) then |= φ(α).

Examples

|= P → (P ∨ Q), so

|= (A ∨ B)→ ((A ∨ B) ∨ Q)

2.5.7
|= ¬Q → (Q → P), so

|= ¬(P → Q) → ((P → Q)→ P)

52

(b) If a logical formula φ contains a formula α, and we replace (an
occurrence of) α by a logically equivalent formula β, then the
result is logically equivalent to φ.

If α ≡ β then φ(α) ≡ φ(β).

Example

P → Q ≡ ¬P ∨ Q, so

Q → (P → Q) ≡ Q → (¬P ∨ Q)

53

COMP9020 Lecture 6
Session 2, 2017

Logic cont’d

54

Lecture 5 recap: Logical connectives

AND — conjunction, ∧, &

OR — disjunction, ∨, ||
NOT — negation

Implication, →, ⊃ (IF-THEN)

Bi-implication, ↔ (IF AND ONLY IF)

A B A ∧ B

F F F
F T F
T F F
T T T

A B A ∨ B

F F F
F T T
T F T
T T T

A ¬ A

F T
T F

55

Lecture 5 recap: Propositional formulae

The set of formulae of propositional logic is the smallest set of
words over Σ such that

>, ⊥ and all elements of Prop are formulae

If φ is a formula, then so is ¬φ
If φ and ψ are formulae, then so are (φ ∧ ψ), (φ ∨ ψ),
(φ→ ψ), and (φ↔ ψ).

56

Lecture 5 recap: Truth tables

Row for every truth assignment — assignment of T/F to
elements of Prop

Columns for subformulae

Truth assignments can also map formulae to T/F: be careful!

p q ¬p ¬p ∧ q p ∨ (¬p ∧ q)

F F T F F
F T T T T
T F F F T
T T F F T

57

Lecture 5 recap: Truth tables

Row for every truth assignment — assignment of T/F to
elements of Prop

Columns for subformulae

Truth assignments can also map formulae to T/F: be careful!

p q ¬p ¬p ∧ q p ∨ (¬p ∧ q)

F F T F F
F T T T T
T F F F T
T T F F T

58

Lecture 5 recap: Truth assignments

A truth assignment is a function ν : Prop → {T ,F}.

Can extend truth assignments to formulae:

ν(>) = T , ν(⊥) = F

ν(¬ϕ) = ¬ν(ϕ),

ν(ϕ ∧ ψ) = ν(ϕ) ∧ ν(psi), ...

59

Lecture 5 recap: Logical equivalence and entailment

Two formulas, ϕ and ψ, are logically equivalent, ϕ ≡ ψ, if
ν(ϕ) = ν(ψ) for all truth assignments ν.

A list of formulae, ϕ1, . . . , ϕn entail a single formula, ψ, written
ϕ1, . . . , ϕn |= ψ if ν(ψ) = T for all truth assignments ν where
ν(ϕ1) = . . . = ν(ϕn) = T . If the list is empty, we say ψ is a
tautology.

Theorem

φ1, . . . φn |= ψ if, and only if, |= (φ1 ∧ . . . ∧ φn)→ ψ

φ ≡ ψ if, and only if, |= φ↔ ψ

60

Lecture 5 recap: Proof techniques

Proof by contrapositive: show A⇒ B by showing ¬B ⇒ ¬A
Proof by contradiction: Assume ¬A. Show B ∧ ¬B. ¬A |= ⊥
if and only if |= A

Proof by cases: Given B1 ∨ · · · ∨ Bn, show Bi |= A for all i .

61

Boolean Functions

Formulae can be viewed as Boolean functions mapping valuations
of their propositional letters to truth values.

A Boolean function of one variable is also called unary.
A function of two variables is called binary.
A function of n input variables is called n-ary.

Question

How many unary Boolean functions are there?
How many binary functions? n-ary?

Question

What connectives do we need to express all of them?

62

Boolean Arithmetic

Consider truth values with operations ∧,∨,¬ as an
algebraic structure:

B = {0, 1} with ‘Boolean’ arithmetic

a ∧ b, a ∨ b, ā = 1− a

NB

We often write pq for p ∧ q.
In electrical and computer engineering, the notation p is more
common than p′, which is often used in mathematics.
Observe that using (·) obviates the need for some parentheses.

63

Applications IV:
Digital Circuits

A formula can be viewed as defining a digital circuit, which
computes a Boolean function of the input propositions. The
function is given by the truth table of the formula.

NB

Common usage: + for or, · for and, x for ¬x

64

Definition: Boolean Algebra

Every structure consisting of a set T with operations join:
a, b 7→ a ∨ b, meet: a, b 7→ a ∧ b and complementation: a 7→ ā,
and distinct elements 0 and 1, is called a Boolean algebra if it
satisfies the following laws, for all x , y , z ∈ T :

commutative: x ∨ y = y ∨ x
x ∧ y = y ∧ x

associative: (x ∨ y) ∨ z = x ∨ (y ∨ z)
(x ∧ y) ∧ z = x ∧ (y ∧ z)

distributive: x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

identity: x ∨ 0 = x , x ∧ 1 = x

complementation: x ∨ x = 1, x ∧ x = 0

65

Terminology and Rules

A literal is an expression p or p, where p is a propositional
atom.

An expression is in CNF (conjunctive normal form) if it has
the form ∧

i

Ci

where each clause Ci is a disjunction of literals e.g. p ∨ q ∨ r .

An expression is in DNF (disjunctive normal form) if it has the
form ∨

i

Ci

where each clause Ci is a conjunction of literals e.g. p ∧ q ∧ r .

66

CNF and DNF are named after their top level operators; no
deeper nesting of ∧ or ∨ is permitted.

We can assume in every clause (disjunct for the CNF,
conjunct for the DNF) any given variable (literal) appears only
once; preferably, no literal and its negation together.

x ∨ x = x , x ∧ x = x
x ∧ x = 0, x ∨ x = 1
x ∧ 0 = 0, x ∧ 1 = x , x ∨ 0 = x , x ∨ 1 = 1

A preferred form for an expression is DNF, with as few terms
as possible. In deriving such minimal simplifications the two
basic rules are absorption and combining the opposites.

Fact

1 x ∨ (x ∧ y) = x (absorption)

2 (x ∧ y) ∨ (x ∧ y) = x (combining the opposites)

67

Theorem

For every Boolean expression φ, there exists an equivalent
expression in conjunctive normal form and an equivalent expression
in disjunctive normal form.

Proof.

We show how to apply the equivalences already introduced to
convert any given formula to an equivalent one in CNF, DNF is
similar.

68

Step 1: Push Negations Down

Using De Morgan’s laws and the double negation rule

x ∨ y = x ∧ y

x ∧ y = x ∨ y

x = x

we push negations down towards the atoms until we obtain a
formula that is formed from literals using only ∧ and ∨.

69

Step 2: Use Distribution to Convert to CNF

Using the distribution rules

x ∨ (y1 ∧ . . . ∧ yn) = (x ∨ y1) ∧ . . . ∧ (x ∨ yn)

(y1 ∧ . . . ∧ yn) ∨ x = (y1 ∨ x) ∧ . . . ∧ (yn ∨ x)

we obtain a CNF formula.

70

CNF/DNF in Propositional Logic

Using the equivalence

A→ B ≡ ¬A ∨ B

we first eliminate all occurrences of →
Example

¬(¬p ∧ ((r ∧ s)→ q)) ≡ ¬(¬p ∧ (¬(r ∧ s) ∨ q))

71

Step 1:

Example

p(rs ∨ q) = p ∨ rs ∨ q

= p ∨ rs ∧ q

= p ∨ rsq

Step 2:

Example

p ∨ rsq = (p ∨ r)(p ∨ sq)

= (p ∨ r)(p ∨ s)(p ∨ q) CNF

72

Canonical Form DNF
Given a Boolean expression E , we can construct an equivalent
DNF Ednf from the lines of the truth table where E is true:
Given an assignment π of 0, 1 to variables x1 . . . xi , define the literal

`i =

{
xi if π(xi) = 1

xi if π(xi) = 0

and a product tπ = `1 · `2 · . . . · `n.

Example

If π(x1) = 1 and π(x2) = 0 then tπ = x1 · x2

The canonical DNF of E is

Ednf =
∑

E(π)=1

tπ

73

Example

If E is defined by
x y E

0 0 1
0 1 0
1 0 1
1 1 1

then Ednf = xy + xy + xy
Note that this can be simplified to either

y + xy

or
xy + x

74

Exercise

10.2.3 Find the canonical DNF form of each of the following
expressions in variables x , y , z

xy

z

xy + z

1

75

Exercise
10.2.3 Find the canonical DNF form of the following expressions

Remember that these are meant as expressions in three variables
x , y , z .

xy = xy · 1 = xy · (z + z) = xyz + xyz

z = xyz + xyz + xyz + xyz

xy + z = combine the 6 product terms above

1 = sum of all 8 possible product terms: xyz + xyz + . . .+ xyz

NB

Obviously, preferred in practice are the expressions with as few
terms as possible.
However, the existence of a uniform representation as the sum of
(quite a few) product terms is important for proving the properties
of Boolean expressions.

76

Karnaugh Maps

For up to four variables (propositional symbols) a diagrammatic
method of simplification called Karnaugh maps works quite well.
For every propositional function of k = 2, 3, 4 variables we
construct a rectangular array of 2k cells. We mark the squares
corresponding to the value 1 with eg “+” and try to cover these
squares with as few rectangles with sides 1 or 2 or 4 as possible.

Example

10.4.2 Use a K-map to find an optimised form.

yz y z̄ ȳ z̄ ȳ z

x + + +
x̄ + + +

77

For optimisation, the idea is to cover the + squares with the
minimum number of rectangles. One cannot cover any empty cells
(they indicate where f (w , x , y , z) is 0).

The rectangles can go ‘around the corner’/the actual map
should be seen as a torus.

Rectangles must have sides of 1, 2 or 4 squares (three
adjacent cells are useless).

Example

yz y z̄ ȳ z̄ ȳ z

x + + +
x̄ + + +

�
 �	�
 �	
�
�

�
�

f = xy + x̄ ȳ + z

Canonical form would consist of writing all cells separately:
xyz + xy z̄ + xȳz + x̄yz + x̄ ȳ z̄ + x̄ ȳ z

78

For optimisation, the idea is to cover the + squares with the
minimum number of rectangles. One cannot cover any empty cells
(they indicate where f (w , x , y , z) is 0).

The rectangles can go ‘around the corner’/the actual map
should be seen as a torus.

Rectangles must have sides of 1, 2 or 4 squares (three
adjacent cells are useless).

Example

yz y z̄ ȳ z̄ ȳ z

x + + +
x̄ + + +

�
 �	�
 �	
�
�

�
�

f = xy + x̄ ȳ + z

Canonical form would consist of writing all cells separately:
xyz + xy z̄ + xȳz + x̄yz + x̄ ȳ z̄ + x̄ ȳ z

79

Supplementary Exercise

10.6.6(c)

yz y z̄ ȳ z̄ ȳ z

wx + + +

wx̄ + + + +

w̄ x̄ + +

w̄x + +

f = wy + x̄ ȳ + xz

Note: trying to use wx̄ or ȳ z doesn’t give as good a solution

80

Supplementary Exercise

10.6.6(c)

yz y z̄ ȳ z̄ ȳ z

wx + + +

wx̄ + + + +

w̄ x̄ + +

w̄x + +

f = wy + x̄ ȳ + xz

Note: trying to use wx̄ or ȳ z doesn’t give as good a solution

81

Boolean Algebras in Computer Science

Several data structures have natural operations following
essentially the same rules as logical ∧, ∨ and ¬.

n-tuples of 0’s and 1’s with Boolean operations, e.g.

join: (1, 0, 0, 1) ∨ (1, 1, 0, 0) = (1, 1, 0, 1)

meet: (1, 0, 0, 1) ∧ (1, 1, 0, 0) = (1, 0, 0, 0)

complement: (1, 0, 0, 1) = (0, 1, 1, 0)

Pow(S) — subsets of S

join: A ∪ B, meet: A ∩ B, complement: Ac = S \ A

82

Example

10.1.1 Define a Boolean algebra for the power set Pow(S) of
S = {a, b, c}
join: X ,Y 7→ X ∪ Y
meet: X ,Y 7→ X ∩ Y
complementation: X 7→ {a, b, c} \ X
0

def
= ∅

1
def
= {a, b, c}

Exercise:
Verify that all Boolean algebra laws (cf. slide 65) hold for
X ,Y ,Z ∈ Pow({a, b, c})

83

Example

10.1.1 Define a Boolean algebra for the power set Pow(S) of
S = {a, b, c}
join: X ,Y 7→ X ∪ Y
meet: X ,Y 7→ X ∩ Y
complementation: X 7→ {a, b, c} \ X
0

def
= ∅

1
def
= {a, b, c}

Exercise:
Verify that all Boolean algebra laws (cf. slide 65) hold for
X ,Y ,Z ∈ Pow({a, b, c})

84

More Examples of Boolean Algebras in CS

Functions from any set S to B; their set is denoted Map(S ,B)

If f , g : S −→ B then

(f ∨ g) : S −→ B is defined by s 7→ f (s) ∨ g(s)
(f ∧ g) : S −→ B is defined by s 7→ f (s) ∧ g(s)
f : S −→ B is defined by s 7→ f (s)

There are 2n such functions for |S | = n

All Boolean functions of n variables, e.g.

(p1, p2, p3) 7→ (p1 ∨ p2) ∧ (p1 ∨ p3) ∧ p2 ∨ p3

There are 22
n

of them; their collection is denoted bool(n)

85

Every finite Boolean algebra satisfies: |T | = 2k for some k.
All algebras with the same number of elements are isomorphic,
i.e. “structurally similar”, written '. Therefore, studying one such
algebra describes properties of all.
A cartesian product of Boolean algebras is again a Boolean
algebra. We write

Bk = B× . . .× B

The algebras mentioned above are all of this form

n-tuples ' Bn

Pow(S) ' B|S|

Map(S ,B) ' B|S |

bool(n) ' B2n

NB

Boolean algebra as the calculus of two values is fundamental to
computer circuits and computer programming.
Example: Encoding subsets as bit vectors.

86

Summary

Logic: syntax, truth tables; ∧, ∨, ¬, →, ↔, >, ⊥
Valid formulae (tautologies), satisfiable formulae

Entailment |=, equivalence ≡
some well-known equivalences (slides 23 and 24)

Proof methods: contrapositive, by contradiction, by cases

Boolean algebra

CNF, DNF, canonical form

Supplementary reading [LLM]

Ch. 1, Sec. 1.5-1.9 (more about good proofs)

Ch. 3, Sec. 3.3 (more about proving equivalences of formulae)

87

