COMP1511 - Programming
Fundamentals

— Week 3 - Lecture 5 —

What did we learn last week?

e if statements - branching code
e Problem solving - thinking carefully while programming
e while loops - repeating code

What are we covering today?

Code Style
e Whatis Code Style? Why does it matter?
Code Reviews

e Whatis a Code Review?
e \What can we learn from Code Reviews?

Functions

e An introduction to what a function is
e How we use functions in C

While Loops Recap

What do we know about While Loops?

They have a specific syntax

They test an expression and run repeatedly while it's true
We can make them stop after a specific number of iterations
We can make them stop after a certain condition is met

We can run any other code inside a while loop

Will it ever stop? | don’t know...

It's easy to make it start, but make sure you can stop it!

e C(Create every loop with the idea of how it stops
e Let's review how we stop loops

While Loop with a Loop Counter

How to make a loop run an exact number of times

// an integer outside the loop
int i = 0;

while (i < 10) { // loop has run i times
// Code in here will run 10 times

i++;
}
// When i hits 10 and the loop’s test fails
// the program will exit the loop

Using a Sentinel Variable with While Loops

A sentinel is a variable we use to intentionally exit a while loop

// an integer outside the loop
int endLoop = 0;

// The loop will exit if it reads an odd number
while (endLoop == 0) {
int inputNumber;
scanf ("%d", &inputNumber) ;
if (inputNumber % 2 == 0) {
printf ("Number is even.\n");
} else {
printf ("Number is odd.\n");
endLoop = 1;

Code Style

0y
Why do we write code for humans? VU o | ;;}_:
| S
e Easier to read *
e FEasier to understand BUT}I|DC
e Less mistakes ll-h REABOUT(COL
e Faster overall development time T Teaamn
(.\' W\] \,&
mE o L U

Good Coding Practices

What is good style?

Indentation and Bracketing
Names of variables and functions
Repetition (or not) of code

Clear comments

Consistency

The easier it is to read and understand, the less mistakes we'll make

Poor Code Style

Can we work with code that's hard to read?

e [|'dlike to show you something | prepared earlier . ..
e CodeStyleBad.c is functionally our Dice Checking program

Let's have a look at the code. ..

What went wrong?

We want more than: “Oh wow, that's a mess”
What are the specific improvements that can make this better?

In the face of disaster, keep a clear head and focus on what can be fixed

Specific Issues

Header comment doesn't show the program'’s intentions
No blank lines separating different components
Multiple expressions on the same line

Inconsistent indenting

Inconsistent spacing

Variable names don't make any sense

Comments don't mean anything

Inconsistent bracketing of if statements

Bracketing is not indented

Inconsistent structure of identical code blocks

The easter egg - there’s actually incorrect code also!

Keeping your house (code) clean

Regular care is always less work than a big cleanout

Write comments before code

Name your variables before you use them

{ everything inside gets indented 4 spaces

} line up your closing brackets vertically with the line that opened them
One expression per line

Maintain consistency in spacing

Comments before code

Comments before code. It's like planning ahead

e Making plans with comments
e You can fill them out with correct code later
e Some of these comments can stay even after you've written the code

// Checking against the target value
if () {
// success
} else if () {
// tie
} else {
// failure (all other possibilities)
}

Naming Variables

Variable names are for humans

e Canyou describe what a variable is in a word or two?
e If your lab partner was to read this name, would it make sense?
e Does it distinguish it well against the other variables?

Indentation

A common convention is to use 4 spaces for indentation

int main (void) {
// everything in here is indented 4 spaces
int total = 5;
if (total > 10) {
// everything in here is indented 4 more
total = 10;
}
// this closing curly bracket lines up
// vertically with the if statement
// that opened it
}
// this curly bracket lines up vertically
// with the main function that opened it

One expression per line

Any single expression that runs should have its own line

int main (void) {
// NOT LIKE THIS'
int numOne; int numTwo;
numOne = 25; numTwo = numOne + 10;
if (numOne < numTwo) { numOne = numTwo;

}

int main (void) {

// Like this :)

int numOne;

int numTwo;

numOne = 25;

numTwo = numOne + 10;
if (numOne < numTwo) {

numOne = numTwo;

}

Spacing

Operators need space to be easily read

int main (void) { int main (void) {
// NOT LIKE THIS! // Like this :)
int a; int a;
int b; int by
int total=0; int total = 0;
if (a<bé&&b>=15) { if (a < b && b >= 15) {
total=a+b; total = a + b;
} }
} }

More Information about Coding Style

e The course webpage has a Style Guide
e Wherever you end up coding, there will be different styles
e Our style is only one of them, but a good place to start!

Your assignments have coding style marks (more on this when they release)

The Exam has some style marks also

Break Time

Code Style isn’t just to make it look nice

Reduces errors later in development
Makes it easier to test and modify
Overall, speeds up development
Makes your co-workers hate you less

Weekly Tests

Self Invigilated Weekly Tests start this week

e A mini exam you run yourself for one hour

e (You can continue working after the one hour if you want to go back over
things with less pressure)

e The detailed rules are in the test itself

e Releases on Thursday and you will have one week to complete it

e Use it as a way to test your progress so far
e Great practice for coding with time pressure and limited resources (exams
or job interviews)

Code Review

What is a code review?

e Having other coders look over your code
e Having an active discussion about the code

e Automated testing can test functionality, but not necessarily usability
e Humans can help you improve as a human!

e Similar to proof-reading a document
e Super valuable to discuss different approaches to the same problem

Why do we review code?

As the code writer

e Getfeedback on how easy itis to understand our code
e Hear about other people’s ideas on solving the same problem

As the code reviewer

e Getto see how someone else writes code
e Learn more about different ways to solve problems

Different ways to review code

Pair Programming

e Lab partners actively discussing solutions
e Live reviewing and discussion while in development

More formal review

e Finish a section of code, then ask people to review it
e Sometimes in person, sometimes using software tools

How to do Pair Programming well

Also, how to learn the most from 1511 labs

e One person on the keyboard (sharing screen in a breakout room)
o Thinking about how to structure the C and syntax
e One person over the shoulder (watching the shared screen)
o Thinking about how to solve the problem
e Active discussion between the two of you as you go (mics open)
e This means the code is constantly under review

Programming with others is one of the best ways to learn!

Conducting a Formal Code Review

Reviewing a finished piece of code

e Reviewers will read the code and help with it
e Remember, we're judging the code, not the coder!
e We're all learning ... this is not about picking at mistakes

Points to Discuss

e Where is it easy or hard to understand the code?
e What are the different possible ways the code can solve the problem?
e Any little issues we can help solve?

What not to do in a Code Review

These things will not help us learn better code:

e “You did this wrong”
e "Your code is bad”
e "“Here are all the mistakes in this code”

We're doing this to help ourselves and others learn more!

No judgement, only help!

What to do in a Code Review

How does one help someone else learn?

e Understand that it's very hard to put your work up for review
e We're not here to judge the code’s standard
e We're here to help everyone learn more

e There is no single right way to solve a problem
e If your way and someone else’s way are different, you can both be right
e Tryto learn from other styles of coding that you review

e Letting people know what you don't understand is one of the most
valuable things you can do in a code review

Next week's Tutorial will have a demo Code Review

Your tutor will do the first review so you can see what it's like

e After this, every code review will be lead by students
e You can also get together with other students to review your Lab work
e (justdon't do it with Assignments or Weekly Tests!)

Functions

Let's introduce functions

e We've already been using some functions!
e¢ main is afunction
e printf and scanf are also functions

What is a function?

e A separate piece of code identified by a name
e It hasinputs and an output
e I|f we "call" a function it will run the code in the function

Functions

How do they work? Main calls the Function,
asking it to run. Input is
sent to the function

T

Function runs its
Function code using the

4_/ input

Output is returned to the
Main. Main continues from
where it was

Function Syntax

We write a function with (in order left to right):

An output (known as the function’s type)

A name

Zero or more input(s) (also known as function parameters)
A body of code in curly brackets

// a function that adds two numbers together
int add (int a, int b) {
return a + b;

}

Return

An important keyword in a function

e return will deliver the output of a function
e return Will also stop the function running and return to where it was
called from

How is a function used?

If a function already exists (like printf)

e We can use a function by calling it by name
e And providing it with input(s) of the correct type(s)

// using the add function
int main (void) {
int firstNumber = 4;
int secondNumber = 6;
int total;

total = add(firstNumber, secondNumber) ;
return 0;

Compilers and Functions

How does our main know what our function is?

e A compiler will process our code, line by line, from top to bottom
e |[fit has seen something before, it will know its name

// An example using variables

int main (void) {
// declaring a variable means it’s usable later
int number = 1;

// this next section won’t work because the compiler
// doesn’t know about otherNumber before it’s used
int total = number + otherNumber;

int otherNumber = 5;

Functions and Declaration

We need to declare a function before it can be used

// a function can be declared without being fully
// written (defined) until later
int add (int a, int b);

int main (void) {
int firstNumber = 4;
int secondNumber = 6;
int total = add(firstNumber, secondNumber) ;
return O;

}

// the function is defined here
int add (int a, int b) {
return a + b;

}

Void Functions

We can also run functions that return no output

e We can use a void function if we don't need anything back from it
e The return keyword won't have a variable or value if it is used at all

// a function of type "void"
// It will not give anything back to whatever function
// called it, but it might still be of use to us
void printAdd (int a, int b) {
int total = a + b;
printf ("The total is %d", total);

What did we learn today?

Code Style

e Making your code understandable and reusable

Code Reviews

e Reviewing your’s and other people’s code can help you learn and share
your skills

Functions

e Separating code to make it easier to read and reuse

