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1 Dynamic Programming Across Subsets

Dynamic Programming across Subsets

• very general technique

• uses solutions of subproblems

• typically stored in a table of exponential size

1.1 Traveling Salesman Problem

Traveling Salesman Problem (TSP)

Input: a set of n cities, the distance d(i, j) ∈ N between every two cities i and j, integer k
Question: Is there a permutation of the cities (a tour) such that the total distance when traveling from city

to city in the specified order, and returning back to the origin, is at most k?

1
7

13

12

7

14

3

45

4

3

Brute-force: Try all permutations of cities; O∗(n!)
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Dynamic Programming for TSP
For a non-empty subset of cities S ⊆ {2, 3, ..., n} and city i ∈ S:

• Opt[S; i] ≡ length of the shortest path starting in city 1, visits all cities in S \ {i} and ends in i.

Then,

Opt[{i}; i] = d(1, i)

Opt[S; i] = min{Opt[S \ {i}; j] + d(j, i) : j ∈ S \ {i}}

• For each subset S in order of increasing cardinality, compute Opt[S; i] for each i.

• Final solution:

min
2≤j≤n

{Opt[{2, 3, ..., n}; j] + d(j, 1)}

Theorem 1 (Held & Karp ’62). TSP can be solved in time O(2nn2) = O∗(2n).

• best known algo for TSP

1.2 Coloring

A k-coloring of a graph G = (V,E) is a function f : V → {1, 2, ..., k} assigning colors to V such that no two adjacent
vertices receive the same color.

Coloring
Input: Graph G, integer k
Question: Does G have a k-coloring?

a b

c d e

f g h

Exercise

Design an O∗(4n) time algorithm for Coloring.
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Maximal Independent Sets

• An independent set is maximal if it is not a subset of any other independent set.

• Examples:

Coloring and Maximal Independent Sets

Theorem 2 ([Moon, Moser ’65], [Johnson, Yannakakis, Papadimitriou ’88]). A graph on n vertices contains at most
3n/3 ⊆ O(1.4423n) maximal independent sets. Moreover, they can all be enumerated in time O∗(3n/3).

Lemma 3 ([Lawler ’76]). For any graph G, there exists an optimal coloring for G where one color class is a maximal
independent set in G.

Proof. Exercise

Dynamic Programming for Coloring

• G[S] ≡ subgraph of G induced by the vertices in S

• Opt[S] ≡ minimum k such that G[S] is k-colorable.

• Then,

Opt[∅] = 0

Opt[S] = 1 + min{Opt[S \ I] : I maximal ind. set in G[S]}

• go through the sets S in order of increasing cardinality

• to compute Opt[S], generate all maximal independent sets I of G[S]

• this can be done in time |S|23|S|/3

• time complexity:
n∑

s=0

(
n

s

)
s23s/3 ≤ n2

n∑
s=0

(
n

s

)
3s/3 = n2(1 + 31/3)n = O(2.4423n)

[Recall the Binomial Theorem: (x + y)n =
∑n

k=0

(
n
k

)
xn−kyk.]

Theorem 4 ([Lawler ’76]). Coloring can be solved in time O(2.4423n).

• was best known algorithm for 25 years (until [Eppstein ’01])

• current best: O∗(2n) [Bjørklund & Husfeldt ’06], [Koivisto ’06]

3



k-Coloring for small k

k-Coloring
Input: Graph G, integer k
Question: Does G have a k-coloring?

• k ≤ 2: polynomial

• k > 2: NP-complete

Algorithm for 3-Coloring

Theorem 5 ([Lawler ’76]). 3-Coloring can be decided in time O(1.4423n).

Proof. For every maximal independent I set of G, check if G− I is 2-colorable.

current best: O(1.3289n) [Eppstein ’01]

Algorithm for 4-Coloring

Theorem 6. 4-Coloring can be decided in time O(1.7851n).

Proof. • For each maximal independent set I of G of size at least n/4, check if G− I is 3-colorable.

• We need to prove that each 4-colorable graph G has a 4-coloring where one color class is a maximal i.s. of
size ≥ n/4?

• Pick a 4-coloring of G.

• ≥ 1 color class contains ≥ n/4 vertices.

• If this color class is not a maximal i.s., recolor some other vertices such that it becomes a maximal i.s.

• Running time: O(3n/31.32893n/4) ⊆ O(1.7851n)

current best: O(1.7272n) [Fomin, Gaspers, Saurabh ’07]

1.3 Dominating Set in bipartite graphs

A dominating set in a graph G = (V,E) is a subset of vertices S ⊆ V such that each vertex of G is either in S or
adjacent to a vertex in S.

Dominating Set
Input: Graph G, integer k
Question: Does G have a dominating set of size k?

A graph G = (V,E) is bipartite if its vertex set can be partitioned into two independent sets.

Dominating Set in Bipartite Graphs
Input: Bipartite graph G, integer k
Question: Does G have a dominating set of size k?

Note: Dominating Set in Bipartite Graphs is NP-complete.
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Algorithm for Dominating Set in Bipartite Graphs
Partition V into independent sets A and B, with |B| ≥ |A|.

The algorithm has 2 phases:

• Preprocessing phase: compute for each X ⊆ A a subset Opt[X] which is a smallest subset of B that
dominates X.

• Main phase: for each subset X ⊆ A, compute a dominating set D of G of minimum size such that D∩A = X.

Main phase. For a vertex subset X ⊆ A, a dominating set D of G of minimum size such that D ∩ A = X is
obtained by setting

D := X ∪ (B \N(X)) ∪ Opt[A \ (X ∪N(B \N(X)))]

if A \X contains no degree-0 vertex. (If A \X contains a degree-0 vertex, we skip this set X, because there is no
dominating set D of G with D ∩A = X.)

A B

N(X)

X

N(B \N(X))

Preprocessing phase. Let B = {b1, . . . , b|B|}. We compute for each X ⊆ A and integer k, 0 ≤ k ≤ |B|, a subset
Opt[X, k] ⊆ {b1, . . . , bk} which is defined as

• a smallest subset of {b1, . . . , bk} that dominates X if X ⊆ N({b1, . . . , bk}), and

• B if X 6⊆ N({b1, . . . , bk}).

Note: Opt[X, |B|] = Opt[X].

Base cases

Opt[∅, k] = ∅ ∀k ∈ {0, . . . , |B|},
Opt[X, 0] = B ∀X, ∅ ( X ⊆ A.

Dynamic Programming recurrence

Opt[X, k] =

{
Opt[X, k − 1] if |Opt[X, k − 1]| < 1 + |Opt[X \N(bk), k − 1]|
{bk} ∪ Opt[X \N(bk), k − 1] otherwise

for each X, ∅ ( X ⊆ A and k ∈ {1, . . . , |B|}.

Theorem 7 ([Liedloff ’08]). Dominating Set in Bipartite Graphs can be solved in O∗(2n/2) time, where n is
the number of vertices of the input graph.

2 Further Reading

• Chapter 3, Dynamic Programming in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms.
Springer, 2010.
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