Outline

1 Branching algorithms

2 Running time analysis

3 Feedback Vertex Set

4 Maximum Leaf Spanning Tree

5 Further Reading
Outline

1. Branching algorithms
2. Running time analysis
3. Feedback Vertex Set
4. Maximum Leaf Spanning Tree
5. Further Reading
Branching Algorithm

- **Selection**: Select a local configuration of the problem instance
- **Recursion**: Recursively solve subinstances
- **Combination**: Compute a solution of the instance based on the solutions of the subinstances

- **Halting rule**: 0 recursive calls
- **Simplification rule**: 1 recursive call
- **Branching rule**: ≥ 2 recursive calls
Algorithm \text{vc1}(G, k);
Outline

1. Branching algorithms
2. Running time analysis
3. Feedback Vertex Set
4. Maximum Leaf Spanning Tree
5. Further Reading
Recall: A search tree models the recursive calls of an algorithm. For a b-way branching where the parameter k decreases by a at each recursive call, the number of nodes is at most $b^{k/a} \cdot (k/a + 1)$.

If k/a and b are upper bounded by a function of k, and the time spent at each node is FPT (typically, polynomial), then we get an FPT running time.
1 Branching algorithms
2 Running time analysis
3 Feedback Vertex Set
4 Maximum Leaf Spanning Tree
5 Further Reading
A feedback vertex set of a multigraph $G = (V, E)$ is a set of vertices $S \subseteq V$ such that $G - S$ is acyclic.

Feedback Vertex Set

- **Input:** Multigraph $G = (V, E)$, integer k
- **Parameter:** k
- **Question:** Does G have a feedback vertex set of size at most k?
Simplification Rules

We apply the first applicable\(^1\) simplification rule.

\[(\text{Finished})\]

If \(G \) is acyclic and \(k \geq 0 \), then return \textbf{Yes}.

\[(\text{Budget-exceeded})\]

If \(k < 0 \), then return \textbf{No}.

\(^1\)A simplification rule is \textit{applicable} if it modifies the instance.
We apply the first applicable simplification rule.

(Finished)
If G is acyclic and $k \geq 0$, then return Yes.

(Budget-exceeded)
If $k < 0$, then return No.

(Loop)
If G has a loop $vv \in E$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

1A simplification rule is applicable if it modifies the instance.
We apply the first applicable simplification rule.

(Finished)
If G is acyclic and $k \geq 0$, then return Yes.

(Budget-exceeded)
If $k < 0$, then return No.

(Loop)
If G has a loop $vv \in E$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

(Multiedge)
If E contains an edge uv more than twice, remove all but two copies of uv.

1A simplification rule is applicable if it modifies the instance.
Simplification Rules II

(Degree-1)

If $\exists v \in V$ with $d_G(v) \leq 1$, then set $G \leftarrow G - v$.
(Degree-2)

If $\exists v \in V$ with $d_G(v) = 2$, then denote $N_G(v) = \{u, w\}$ and set $G \leftarrow G' = (V \setminus \{v\}, (E \setminus \{vu, vw\}) \cup \{uw\})$.

Lemma 1 (Degree-2) is sound.

Proof.
Suppose S is a feedback vertex set of G of size at most k. Let $S' = S$ if $v \not\in S$, $S' = S \setminus \{v\} \cup \{u\}$ if $v \in S$.

Now, $|S'| \leq k$ and S' is a feedback vertex set of G' since every cycle in G' corresponds to a cycle in G, with, possibly, the edge uw replaced by the path (u, v, w).

Suppose S' is a feedback vertex set of G' of size at most k. Then, S' is also a feedback vertex set of G.

S. Gaspers (UNSW)
(Degree-2)

If $\exists v \in V$ with $d_G(v) = 2$, then denote $N_G(v) = \{u, w\}$ and set $G \leftarrow G' = (V \setminus \{v\}, (E \setminus \{vu, vw\}) \cup \{uw\})$.

Lemma 1

(Degree-2) is sound.

Proof.

Suppose S is a feedback vertex set of G of size at most k. Let

$$S' = \begin{cases} S & \text{if } v \notin S \\ (S \setminus \{v\}) \cup \{u\} & \text{if } v \in S. \end{cases}$$

Now, $|S'| \leq k$ and S' is a feedback vertex set of G' since every cycle in G' corresponds to a cycle in G, with, possibly, the edge uw replaced by the path (u, v, w).

Suppose S' is a feedback vertex set of G' of size at most k. Then, S' is also a feedback vertex set of G.

\[\square \]
A select–discard branching decreases k in only one branch.

One could branch on all the vertices of a cycle, but the length of a shortest cycle might not be bounded by any function of k.

Idea:

An acyclic graph has average degree < 2.

After applying simplification rules, G has average degree ≥ 3.

The selected feedback vertex set needs to be incident to many edges.

Does a feedback vertex set of size at most k contain at least one vertex among the $f(k)$ vertices of highest degree?
Remaining issues

- A select–discard branching decreases k in only one branch.
- One could branch on all the vertices of a cycle, but the length of a shortest cycle might not be bounded by any function of k.

Idea:

- An acyclic graph has average degree < 2.
- After applying simplification rules, G has average degree ≥ 3.
- The selected feedback vertex set needs to be incident to many edges.
- Does a feedback vertex set of size at most k contain at least one vertex among the $f(k)$ vertices of highest degree?
Lemma 2

If S is a feedback vertex set of $G = (V, E)$, then

$$\sum_{v \in S} (d_G(v) - 1) \geq |E| - |V| + 1$$
The fvs needs to be incident to many edges

Lemma 2

If S is a feedback vertex set of $G = (V, E)$, then

$$\sum_{v \in S} (d_G(v) - 1) \geq |E| - |V| + 1$$

Proof.

Since $F = G - S$ is acyclic, $|E(F)| \leq |V| - |S| - 1$. Since every edge in $E \setminus E(F)$ is incident with a vertex of S, we have

$$|E| = |E| - |E(F)| + |E(F)|$$

$$\leq \left(\sum_{v \in S} d_G(v) \right) + (|V| - |S| - 1)$$

$$= \left(\sum_{v \in S} (d_G(v) - 1) \right) + |V| - 1.$$
Lemma 3

Let G be a graph with minimum degree at least 3 and let H denote a set of $3k$ vertices of highest degree in G.

Every feedback vertex set of G of size at most k contains at least one vertex of H.

Proof.

Suppose not. Let S be a feedback vertex set with $|S| \leq k$ and $S \cap H = \emptyset$. Then,

$$2|E| - |V| = \sum_{v \in V} (d_G(v) - 1) = \sum_{v \in H} (d_G(v) - 1) + \sum_{v \in V \setminus H} (d_G(v) - 1) \geq 3 \cdot \left(\sum_{v \in S} (d_G(v) - 1) \right) + \sum_{v \in S} (d_G(v) - 1) \geq 4 \cdot (|E| - |V| + 1) \iff 3|V| \geq 2|E| + 4.$$

But this contradicts the fact that every vertex of G has degree at least 3.
Lemma 3

Let G be a graph with minimum degree at least 3 and let H denote a set of $3k$ vertices of highest degree in G. Every feedback vertex set of G of size at most k contains at least one vertex of H.

Proof.

Suppose not. Let S be a feedback vertex set with $|S| \leq k$ and $S \cap H = \emptyset$. Then,

$$2|E| - |V| = \sum_{v \in V} (d_G(v) - 1)$$

$$= \sum_{v \in H} (d_G(v) - 1) + \sum_{v \in V \setminus H} (d_G(v) - 1)$$

$$\geq 3 \cdot \left(\sum_{v \in S} (d_G(v) - 1) \right) + \sum_{v \in S} (d_G(v) - 1)$$

$$\geq 4 \cdot (|E| - |V| + 1)$$

$$\Leftrightarrow 3|V| \geq 2|E| + 4.$$

But this contradicts the fact that every vertex of G has degree at least 3.
Algorithm for Feedback Vertex Set

Theorem 4

Feedback Vertex Set can be solved in $O^*((3k)^k)$ time.

Proof (sketch).

- Exhaustively apply the simplification rules.
- The branching rule computes H of size $3k$, and branches into subproblems $(G - v, k - 1)$ for each $v \in H$.

Current best:

- $O^*(3.460^k)$ deterministic [IK19],
- $O^*(2.7^k)$ time randomized [LN19]
Outline

1 Branching algorithms
2 Running time analysis
3 Feedback Vertex Set
4 Maximum Leaf Spanning Tree
5 Further Reading
A leaf of a tree is a vertex with degree 1. A spanning tree in a graph $G = (V, E)$ is a subgraph of G that is a tree and has $|V|$ vertices.

Maximum Leaf Spanning Tree

Input: connected graph G, integer k

Parameter: k

Question: Does G have a spanning tree with at least k leaves?
A k-leaf tree in G is a subgraph of G that is a tree with at least k leaves.

A k-leaf spanning tree in G is a spanning tree in G with at least k leaves.

Lemma 5

Let $G = (V, E)$ be a connected graph.

G has a k-leaf tree \iff G has a k-leaf spanning tree.

Proof.

(\Leftarrow): trivial

(\Rightarrow): Let T be a k-leaf tree in G. By induction on $x := |V| - |V(T)|$, we will show that T can be extended to a k-leaf spanning tree in G.

Base case: $x = 0 \checkmark$.

Induction: $x > 0$, and assume the claim is true for all $x' < x$. Choose $uv \in E$ such that $u \in V(T)$ and $v \notin V(T)$. Since $T' := (V(T) \cup \{v\}, E(T) \cup \{uv\})$ has $\geq k$ leaves and $< x$ external vertices, it can be extended to a k-leaf spanning tree in G by the induction hypothesis. \qed
The branching algorithm will check whether G has a k-leaf tree.

A tree with ≥ 3 vertices has at least one internal (= non-leaf) vertex.

“Guess” an internal vertex r, i.e., do a $|V|$-way branching fixing an initial internal vertex r.
The branching algorithm will check whether G has a k-leaf tree.

A tree with ≥ 3 vertices has at least one internal (= non-leaf) vertex.

“Guess” an internal vertex r, i.e., do a $|V|$-way branching fixing an initial internal vertex r.

In any branch, the algorithm has computed

- T – a tree in G
- I – the internal vertices of T, with $r \in I$
- B – a subset of the leaves of T where T may be extended: the boundary set
- L – the remaining leaves of T
- X – the external vertices $V \setminus V(T)$
The branching algorithm will check whether G has a k-leaf tree.

A tree with ≥ 3 vertices has at least one internal (non-leaf) vertex.

“Guess” an internal vertex r, i.e., do a $|V|$-way branching fixing an initial internal vertex r.

In any branch, the algorithm has computed

- T – a tree in G
- I – the internal vertices of T, with $r \in I$
- B – a subset of the leaves of T where T may be extended: the boundary set
- L – the remaining leaves of T
- X – the external vertices $V \setminus V(T)$

The question is whether T can be extended to a k-leaf tree where all the vertices in L are leaves.
Apply the first applicable simplification rule:

(Halt-Yes)
If $|L| + |B| \geq k$, then return \textbf{Yes}.

(Halt-No)
If $|B| = 0$, then return \textbf{No}.

(Non-extendable)
If $\exists v \in B$ with $N_G(v) \cap X = \emptyset$, then move v to L.
Lemma 6 (Branching Lemma)

Suppose $u \in B$ and there exists a k-leaf tree T' extending T where u is an internal vertex.
Then, there exists a k-leaf tree T'' extending $(V(T) \cup N_G(u), E(T) \cup \{uv : v \in N_G(u) \cap X\})$.

Proof. Start from $T'' \leftarrow T'$ and perform the following operation for each $v \in N_G(u) \cap X$.
If $v \not\in V(T')$, then add the vertex v and the edge uv.
Otherwise, add the edge uv, creating a cycle C in T and remove the other edge of C incident to v.
This does not decrease the number of leaves, since it only increases the number of edges incident to u, and u was already internal.
Lemma 6 (Branching Lemma)

Suppose $u \in B$ and there exists a k-leaf tree T' extending T where u is an internal vertex. Then, there exists a k-leaf tree T'' extending $(V(T) \cup N_G(u), E(T) \cup \{uv : v \in N_G(u) \cap X\})$.

Proof.

Start from $T'' \leftarrow T'$ and perform the following operation for each $v \in N_G(u) \cap X$. If $v \notin V(T')$, then add the vertex v and the edge uv. Otherwise, add the edge uv, creating a cycle C in T and remove the other edge of C incident to v. This does not decrease the number of leaves, since it only increases the number of edges incident to u, and u was already internal. \qed
Lemma 7 (Follow Path Lemma)

Suppose $u \in B$ and $|N_G(u) \cap X| = 1$. Let $N_G(u) \cap X = \{v\}$.

If there exists a k-leaf tree extending T where u is internal, but no k-leaf tree extending T where u is a leaf, then there exists a k-leaf tree extending T where both u and v are internal.
Lemma 7 (Follow Path Lemma)

Suppose \(u \in B \) and \(|N_G(u) \cap X| = 1 \). Let \(N_G(u) \cap X = \{v\} \).

If there exists a \(k \)-leaf tree extending \(T \) where \(u \) is internal, but no \(k \)-leaf tree extending \(T \) where \(u \) is a leaf, then there exists a \(k \)-leaf tree extending \(T \) where both \(u \) and \(v \) are internal.

Proof.

Suppose not, and let \(T' \) be a \(k \)-leaf tree extending \(T \) where \(u \) is internal and \(v \) is a leaf. But then, \(T - v \) is a \(k \)-leaf tree as well.
Apply halting & simplification rules

Select $u \in B$. Branch into

- $u \in L$
- $u \in I$. In this case, add $X \cap N_G(u)$ to B (Branching Lemma).

- In the special case where $|X \cap N_G(u)| = 1$, denote $\{v\} = X \cap N_G(u)$, make v internal, and add $N_G(v) \cap X$ to B, continuing the same way until reaching a vertex with at least 2 neighbors in X (Follow Path Lemma).

- In the special case where $|X \cap N_G(u)| = 0$, return No.
Apply halting & simplification rules

Select \(u \in B \). Branch into

- \(u \in L \)
- \(u \in I \). In this case, add \(X \cap N_G(u) \) to \(B \) (Branching Lemma).
 - In the special case where \(|X \cap N_G(u)| = 1 \), denote \(\{v\} = X \cap N_G(u) \), make \(v \) internal, and add \(N_G(v) \cap X \) to \(B \), continuing the same way until reaching a vertex with at least 2 neighbors in \(X \) (Follow Path Lemma).
 - In the special case where \(|X \cap N_G(u)| = 0 \), return \(\text{No} \).

In one branch, a vertex moves from \(B \) to \(L \); in the other branch, \(|B| \) increases by at least 1.
Running time analysis

- Consider the “measure” \(\mu := 2k - 2|L| - |B| \)
- We have that \(0 \leq \mu \leq 2k \)
- Branch where \(u \in L \):
 - \(|B|\) decreases by 1, \(|L|\) increases by 1
 - \(\mu\) decreases by 1
- Branch where \(u \in I \):
 - \(u\) moves from \(B\) to \(I\)
 - \(\geq 2\) vertices move from \(X\) to \(B\)
 - \(\mu\) decreases by at least 1

- Binary search tree of height \(\leq \mu \leq 2k\)
Theorem 8 ([KLR11])

Maximum Leaf Spanning Tree can be solved in $O^*(4^k)$ time.

Current best: $O(3.188^k)$ [Zeh18]
1. Branching algorithms
2. Running time analysis
3. Feedback Vertex Set
4. Maximum Leaf Spanning Tree
5. Further Reading
Further Reading

- Chapter 3, *Bounded Search Trees* in [Cyg+15]
- Chapter 3, *Bounded Search Trees* in [DF13]
- Chapter 8, *Depth-Bounded Search Trees* in [Nie06]
References

References II
