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Branching Algorithm

Branching Algorithm

Selection: Select a local configuration of the problem instance

Recursion: Recursively solve subinstances

Combination: Compute a solution of the instance based on the solutions of
the subinstances

Halting rule: 0 recursive calls

Simplification rule: 1 recursive call

Branching rule: ≥ 2 recursive calls
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Example: Our first Vertex Cover algorithm

Algorithm vc1(G, k);

1 if E = ∅ then // all edges are covered

2 return Yes

3 else if k ≤ 0 then // we cannot select any vertex

4 return No

5 else
6 Select an edge uv ∈ E;
7 return vc1(G− u, k − 1) ∨ vc1(G− v, k − 1)
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Search trees

Recall: A search tree models the recursive calls of an algorithm.
For a b-way branching where the parameter k decreases by a at each recursive
call, the number of nodes is at most bk/a · (k/a+ 1).

k

k − a

k − 2a k − 2a

k − a

k − 2a k − 2a
...

≤ k/a+ 1

≤ bk/a

If k/a and b are upper bounded by a function of k, and the time spent at each
node is FPT (typically, polynomial), then we get an FPT running time.
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Feedback Vertex Set

A feedback vertex set of a multigraph G = (V,E) is a set of vertices S ⊆ V such
that G− S is acyclic.

Feedback Vertex Set
Input: Multigraph G = (V,E), integer k
Parameter: k
Question: Does G have a feedback vertex set of size at most k?
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Simplification Rules

We apply the first applicable1 simplification rule.

(Finished)

If G is acyclic and k ≥ 0, then return Yes.

(Budget-exceeded)

If k < 0, then return No.

(Loop)

If G has a loop vv ∈ E, then set G← G− v and k ← k − 1.

(Multiedge)

If E contains an edge uv more than twice, remove all but two copies of uv.

1A simplification rule is applicable if it modifies the instance.
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Simplification Rules II

(Degree-1)

If ∃v ∈ V with dG(v) ≤ 1, then set G← G− v.
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Simplification Rules III

(Degree-2)

If ∃v ∈ V with dG(v) = 2, then denote NG(v) = {u,w} and set
G← G′ = (V \ {v}, (E \ {vu, vw}) ∪ {uw}).

Lemma 1

(Degree-2) is sound.

Proof.
Suppose S is a feedback vertex set of G of size at most k. Let

S′ =

{
S if v /∈ S
(S \ {v}) ∪ {u} if v ∈ S.

Now, |S′| ≤ k and S′ is a feedback vertex set of G′ since every cycle in G′ corresponds
to a cycle in G, with, possibly, the edge uw replaced by the path (u, v, w).

Suppose S′ is a feedback vertex set of G′ of size at most k. Then, S′ is also a feedback
vertex set of G.
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Remaining issues

A select–discard branching decreases k in only one branch

One could branch on all the vertices of a cycle, but the length of a shortest
cycle might not be bounded by any function of k

Idea:

An acyclic graph has average degree < 2

After applying simplification rules, G has average degree ≥ 3

The selected feeback vertex set needs to be incident to many edges

Does a feedback vertex set of size at most k contain at least one vertex
among the f(k) vertices of highest degree?
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The fvs needs to be incident to many edges

Lemma 2

If S is a feedback vertex set of G = (V,E), then∑
v∈S

(dG(v)− 1) ≥ |E| − |V |+ 1

Proof.

Since F = G− S is acyclic, |E(F )| ≤ |V | − |S| − 1.
Since every edge in E \ E(F ) is incident with a vertex of S, we have

|E| = |E| − |E(F )|+ |E(F )|

≤

(∑
v∈S

dG(v)

)
+ (|V | − |S| − 1)

=

(∑
v∈S

(dG(v)− 1)

)
+ |V | − 1.

S. Gaspers (UNSW) Branching 19T3 14 / 30



The fvs needs to be incident to many edges

Lemma 2

If S is a feedback vertex set of G = (V,E), then∑
v∈S

(dG(v)− 1) ≥ |E| − |V |+ 1

Proof.

Since F = G− S is acyclic, |E(F )| ≤ |V | − |S| − 1.
Since every edge in E \ E(F ) is incident with a vertex of S, we have

|E| = |E| − |E(F )|+ |E(F )|

≤

(∑
v∈S

dG(v)

)
+ (|V | − |S| − 1)

=

(∑
v∈S

(dG(v)− 1)

)
+ |V | − 1.

S. Gaspers (UNSW) Branching 19T3 14 / 30



The fvs needs to contain a high-degree vertex

Lemma 3
Let G be a graph with minimum degree at least 3 and let H denote a set of 3k
vertices of highest degree in G.
Every feedback vertex set of G of size at most k contains at least one vertex of H.

Proof.
Suppose not. Let S be a feedback vertex set with |S| ≤ k and S ∩H = ∅. Then,

2|E| − |V | =
∑
v∈V

(dG(v)− 1)

=
∑
v∈H

(dG(v)− 1) +
∑

v∈V \H

(dG(v)− 1)

≥ 3 · (
∑
v∈S

(dG(v)− 1)) +
∑
v∈S

(dG(v)− 1)

≥ 4 · (|E| − |V |+ 1)

⇔ 3|V | ≥ 2|E|+ 4.

But this contradicts the fact that every vertex of G has degree at least 3.
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Algorithm for Feedback Vertex Set

Theorem 4

Feedback Vertex Set can be solved in O∗((3k)k) time.

Proof (sketch).

Exhaustively apply the simplification rules.

The branching rule computes H of size 3k, and branches into subproblems
(G− v, k − 1) for each v ∈ H.

Current best:
O∗(3.460k) deterministic [IK19],
O∗(2.7k) time randomized [LN19]
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Maximum Leaf Spanning Tree

A leaf of a tree is a vertex with degree 1. A spanning tree in a graph G = (V,E)
is a subgraph of G that is a tree and has |V | vertices.

Maximum Leaf Spanning Tree
Input: connected graph G, integer k
Parameter: k
Question: Does G have a spanning tree with at least k leaves?
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Property

A k-leaf tree in G is a subgraph of G that is a tree with at least k leaves.
A k-leaf spanning tree in G is a spanning tree in G with at least k leaves.

Lemma 5

Let G = (V,E) be a connected graph.
G has a k-leaf tree ⇔ G has a k-leaf spanning tree.

Proof.

(⇐): trivial
(⇒): Let T be a k-leaf tree in G. By induction on x := |V | − |V (T )|, we will
show that T can be extended to a k-leaf spanning tree in G.
Base case: x = 0 X.
Induction: x > 0, and assume the claim is true for all x′ < x. Choose uv ∈ E
such that u ∈ V (T ) and v /∈ V (T ). Since T ′ := (V (T ) ∪ {v}, E(T ) ∪ {uv}) has
≥ k leaves and < x external vertices, it can be extended to a k-leaf spanning tree
in G by the induction hypothesis.
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Strategy

The branching algorithm will check whether G has a k-leaf tree.

A tree with ≥ 3 vertices has at least one internal (= non-leaf) vertex.

“Guess” an internal vertex r, i.e., do a |V |-way branching fixing an initial
internal vertex r.

In any branch, the algorithm has computed

T – a tree in G
I – the internal vertices of T , with r ∈ I
B – a subset of the leaves of T where T may be extended: the boundary set
L – the remaining leaves of T
X – the external vertices V \ V (T )

The question is whether T can be extended to a k-leaf tree where all the
vertices in L are leaves.
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Simplification Rules

Apply the first applicable simplification rule:

(Halt-Yes)

If |L|+ |B| ≥ k, then return Yes.

(Halt-No)

If |B| = 0, then return No.

(Non-extendable)

If ∃v ∈ B with NG(v) ∩X = ∅, then move v to L.
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Branching Lemma

Lemma 6 (Branching Lemma)

Suppose u ∈ B and there exists a k-leaf tree T ′ extending T where u is an
internal vertex.
Then, there exists a k-leaf tree T ′′ extending
(V (T ) ∪NG(u), E(T ) ∪ {uv : v ∈ NG(u) ∩X}).

Proof.

Start from T ′′ ← T ′ and perform the following operation for each v ∈ NG(u)∩X.
If v /∈ V (T ′), then add he vertex v and the edge uv.
Otherwise, add the edge uv, creating a cycle C in T and remove the other edge of
C incident to v. This does not decrease the number of leaves, since it only
increases the number of edges incident to u, and u was already internal.
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Follow Path Lemma

Lemma 7 (Follow Path Lemma)

Suppose u ∈ B and |NG(u) ∩X| = 1. Let NG(u) ∩X = {v}.
If there exists a k-leaf tree extending T where u is internal, but no k-leaf tree
extending T where u is a leaf, then there exists a k-leaf tree extending T where
both u and v are internal.

Proof.

Suppose not, and let T ′ be a k-leaf tree extending T where u is internal and v is a
leaf. But then, T − v is a k-leaf tree as well.
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Algorithm

Apply halting & simplification rules

Select u ∈ B. Branch into

u ∈ L
u ∈ I. In this case, add X ∩NG(u) to B (Branching Lemma).

In the special case where |X ∩NG(u)| = 1, denote {v} = X ∩NG(u), make v
internal, and add NG(v) ∩X to B, continuing the same way until reaching a
vertex with at least 2 neighbors in X (Follow Path Lemma).
In the special case where |X ∩NG(u)| = 0, return No.

In one branch, a vertex moves from B to L; in the other branch, |B|
increases by at least 1.
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Running time analysis

Consider the “measure” µ := 2k − 2|L| − |B|
We have that 0 ≤ µ ≤ 2k

Branch where u ∈ L:

|B| decreases by 1, |L| increases by 1
µ decreases by 1

Branch where u ∈ I.

u moves from B to I
≥ 2 vertices move from X to B
µ decreases by at least 1

Binary search tree of height ≤ µ ≤ 2k
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Result for Maximum Leaf Spanning Tree

Theorem 8 ([KLR11])

Maximum Leaf Spanning Tree can be solved in O∗(4k) time.

Current best: O(3.188k) [Zeh18]
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Further Reading

Chapter 3, Bounded Search Trees in [Cyg+15]

Chapter 3, Bounded Search Trees in [DF13]

Chapter 8, Depth-Bounded Search Trees in [Nie06]
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