
0

Welcome!
COMP1511 18s1

Programming Fundamentals

1COMP1511 18s1
— Lecture 16 —

Linked Lists
Andrew Bennett

<andrew.bennett@unsw.edu.au>

2

Overview
after this lecture, you should be able to…

have a better understanding of linked lists

write code to create a linked list

write code to traverse a linked list

solve simple problems using linked lists

(note: you shouldn’t be able to do all of these immediately after watching this lecture. however, this lecture should (hopefully!) give you the foundations you need to develop these skills. remember: programming is like

learning any other language, it takes consistent and regular practice.)

3

Admin

Don’t panic!
assignment 2

(if you haven’t started yet, start ASAP)
deadline extended to Sunday 13th May

assignment 1
tutor marking/feedback in progress

week 9 weekly test out now

don’t forget about help sessions!
see course website for details

4

Help Sessions
Wednesday

6-8pm, J17 201

Thursday
6-8pm, J17 201

Friday
10am-12pm, Brass Lab (J17 Level 3)

2pm-4pm, Brass Lab (J17 Level 3)
4pm-6pm, Oboe Lab (J17 Level 3)

note: Brass Lab = Bugle/Horn

5

The node struct

struct node {

 int data;

 struct node *next;

};

6

Interacting with a node struct

struct node {

 int data;

 struct node *next;

};

// "struct node hello" (no *)

// "hello" is an actual node in the function's memory

struct node hello;

hello.data = 10;

hello.next = NULL;

// in the function's memory

// ______

// hello | 10 |

// |------|

// | NULL |

// |______|

7

Making a new node

// Allocates memory for a new node; returns its address

struct node *make_node(int value) {

 struct node *new = malloc(1 * sizeof(struct node));

 new->data = value;

 new->next = NULL;

 return new;

}

// "struct node * hello"

// "hello" is a pointer to a node,

// it just stores the _address_

// (of the memory we get from malloc)

struct node *hello = make_node(10);

// in the heap (malloced memory)

// ______

// hello | 10 |

// |------|

// | NULL |

// |______|

8

Freeing a node

// In accordance with Newton's 3rd Law of Memory Allocation

// "For every malloc, there is an equal and opposite free"

void free_node(struct node *node) {

 free(node);

}

struct node *hello = make_node(10);

free_node(hello);

9

Node pointers vs allocated nodes
reference to a node

arrow

struct node *curr ...

vs

making (allocating) a new node
circle

... = malloc(1 * sizeof(struct node));

10

Node pointers vs allocated nodes
reference to a node

arrow

struct node *curr ...

vs

making (allocating) a new node
circle

... = malloc(1 * sizeof(struct node));

11

Node pointers vs allocated nodes
reference to a node (arrow) vs

making (allocating) a new node (circle)

12

array/list “traversal”
(going through every element)

13

Traversing… an Array

void fillArray (int array[ARRAY_SIZE], int value) {

 int i = 0;

 while (i < ARRAY_SIZE) {

 array[i] = value; // set the value

 i++; // move to next element

 }

}

14

Traversing… a Linked List

void fillList (struct node *list, int value) {

 struct node *curr = list;

 while (curr != NULL) {

 curr->data = value; // set the value

 curr = curr->next; // move to next node

 }

}

