
NAMES AND VALUES

ERIC MARTIN

We talk of 0, 1, 2, 3.14 as values, but 0, 1, 2, 3.14 are also names of values; we cannot refer to values without naming them.
In the computing world, a value is “stored” in memory as bits. How a sequence of bits relates to a value is determined by
a particular coding and decoding scheme. For instance, the scheme that represents nonnegative integers in base 2 over 8
bits can let us “store” the value (named) 9 as 00001001 somewhere in memory. Neither a name nor a sequence of bits is a
value; to refer to the name of a value and to the storage of a value somewhere in memory, let us talk about v-name and
v-storage, respectively, without investigating further what the value itself actually is. . .

A v-name can have many occurrences: in the expression X = 2+2, there are two occurrences of the v-name 2. As much as
“value” is an abstract notion, occurrences of v-names and v-storages can be concretely located in the text of a program
and in computer memory, respectively.

An occurrence of a v-name is always referring to a v-storage that determines some value according to an implicit coding
and decoding scheme. The following diagram is fundamental; it indicates that an occurrence ν of a v-name is always,
necessarily, associated with, referencing, a v-storage s, that is, a sequence of bits stored at a particular memory address;
a particular coding and decoding scheme is implicit and determines the value that is named via ν and stored as s.

ν
4548041824

1 0 1 1

s

There are two kinds of v-names, constant expressions and variable expressions, with as particular cases, constants and
variables, respectively.

For instance, 2 and 1+1 are two constant expressions, the first of which is a constant. In the following code, the two
occurrences of 2 and the unique occurrence of 1+1 are seen to refer to the same v-storage, with the expectation that it
“stores” the value 2 thanks to an appropriate coding and decoding scheme.

>>> id(2), id(2), id(1+1)

(4481604704, 4481604704, 4481604704)

2

2

1+1

4481604704

Encoding of 2

s

Date: Session 2, 2015.

2 ERIC MARTIN

The code

>>> 2 is 2, 2 is 1+1

(True, True)

allows us to draw the diagrams

2

2

Encoding of 2

s1 2

1+1

Encoding of 2

s2

and suspect that s1 and s2 are actually identical, so that the picture could actually be:

2

2

2

1+1

Encoding of 2

s

Whereas the value named by a constant expression is fully determined by the syntactic rules and semantics of the language,
the value named by a variable is arbitrary. With the assignment operator =, we let a variable refer to a v-storage. Thanks
to the code X = 2, we are somehow letting X be a v-name for the value 2, but more precisely, and fundamentally, we are
letting X be another v-name for the value (named) 2 by letting X reference the same v-storage as the occurrence of the
v-name 2 to the right of the assignment operator does, and this for at least as long as we do not change the value of X:

X

2

Encoding of 2

s

So from the code

>>> X = 2; Y = 2

>>> X is Y

True

we are justified in drawing the diagram

X

2

Y

2

X

Y

Encoding of 2

s

NAMES AND VALUES 3

whereas from the code

>>> X = [2]; Y = [2]

>>> X is Y

False

we are justified in drawing the diagram

X

[2]

X

Encoding of [2]

s1 Y

[2]

Y

Encoding of [2]

s2

The code

>>> X = 1; Y = 0; id(X), id(Y)

(4481604672, 4481604640)

>>> X = 0; Y = 1; id(X), id(Y)

(4481604640, 4481604672)

leads to the diagram:

X

Y
4481604672

Encoding of 1

s1 Y

X
4481604640

Encoding of 0

s2

The code

>>> X = [0]; Y = [1]; id(X), id(Y)

(4521980104, 4521980360)

>>> X = [1]; Y = [0]; id(X), id(Y)

(4521980296, 4521980104)

leads to the diagram:

X

Y
4521980104

Encoding of [0]

s1 Y 4521980360

Encoding of [1]

s2

X

4521980296

Encoding of [1]

s3

4 ERIC MARTIN

The following code involves 5 occurrences of names for the same value and 3 v-storages.

>>> id([0, 1]); id([0, 1]); id([0, 1]); id([0, 1]); id([0, 1])

4511633480

4486339464

4486339464

4486339464

4511631496

In reference to the four occurrences of [0, 1], either 2 or 3 v-storages are involved with the following code.

>>> id([0, 1]) is id([0, 1])

False

>>> id([0, 1]), id([0, 1])

(4521980232, 4521980232)

With the following code

>>> id([0, 1]), id([2, 3])

(4521957128, 4521957128)

we see one value “take the place” of another one in memory:

[0, 1]

[2, 3] 4521957128

Encoding of [0, 1] and then [2, 3]

s

NAMES AND VALUES 5

There are more occurrences of v-names than in our code:

>>> import sys

>>> sys.getrefcount(0), sys.getrefcount(1), sys.getrefcount(2), sys.getrefcount(3)

(1459, 1670, 457, 172)

>>> sys.getrefcount(4), sys.getrefcount(5), sys.getrefcount(6), sys.getrefcount(7)

(243, 104, 89, 51)

>>> sys.getrefcount(8), sys.getrefcount(9), sys.getrefcount(254), sys.getrefcount(255)

(187, 60, 4, 18)

>>> sys.getrefcount(256), sys.getrefcount(257), sys.getrefcount(258), sys.getrefcount(259)

(59, 2, 2, 2)

The following code provides another illustration of the transition between integers smaller than 257 and integers at least
equal to 257.

>>> X = 255

>>> X is 255

True

>>> X = 256

>>> X is 256

True

>>> X = 257

>>> X is 257

False

>>> X = 258

>>> X is 258

False

But the following code does not.

>>> X = 255; X is 255

True

>>> X = 256; X is 256

True

>>> X = 257; X is 257

True

>>> X = 258; X is 258

True

In the following code, each of the 4 occurrences of [0, 1] refers to a different v-storage of the value [0, 1], and each of
those v-storages is minimally referred to.

>>> X = [0, 1]; Y = [0, 1]; Z = [0, 1]

>>> X is Y, Y is Z, X is Z

(False, False, False)

>>> sys.getrefcount([0, 1])

1

>>> sys.getrefcount(X), sys.getrefcount(Y), sys.getrefcount(Z)

(2, 2, 2)

6 ERIC MARTIN

The following three pieces of code deal with a list of integers and lists of lists of integers.

>>> X = [0] * 3; X

[0, 0, 0]

>>> id(X), id(X[0]), id(X[1]), id(X[2])

(4521957128, 4481604640, 4481604640, 4481604640)

>>> X[0] = 1; X

[1, 0, 0]

>>> id(X), id(X[0]), id(X[1]), id(X[2])

(4521957128, 4481604672, 4481604640, 4481604640)

X

X 4521957128

Encoding of [0, 0, 0]
and then [1, 0, 0]

s1

X[0]

X[1]

X[2]

4481604640

Encoding of 0

s2

X[1]

X[2]

X[0]

4481604672

Encoding of 1

s3

>>> X = [[0]] * 3; X

[[0], [0], [0]]

>>> id(X), id(X[0]), id(X[1]), id(X[2])

(4521981960, 4511587784, 4511587784, 4511587784)

>>> X[0][0] = 1; X

[[1], [1], [1]]

>>> id(X), id(X[0]), id(X[1]), id(X[2])

(4521981960, 4511587784, 4511587784, 4511587784)

X

X 4521981960

Encoding of [[0], [0], [0]]
and then [[1], [1], [1]]

s1

X[0]

X[1]

X[2]

X[0]

X[1]

X[2]

4511587784

Encoding of [0]
and then [1]

s2

NAMES AND VALUES 7

>>> X = [[0], [0], [0]]; X

[[0], [0], [0]]

>>> id(X), id(X[0]), id(X[1]), id(X[2])

(4521980424, 4521980104, 4521981832, 4521980680)

>>> X[0][0] = 1; X

[[1], [0], [0]]

>>> id(X), id(X[0]), id(X[1]), id(X[2])

(4521980424, 4521980104, 4521981832, 4521980680)

X

X 4521980424

Encoding of [[0], [0], [0]]
and then [[1], [0], [0]]

s1
X[0]

X[0]

Encoding of [0]
and then [1]

s2

4521980104

X[1]

X[1] Encoding of [0]

s3

4521981832

X[2]

X[2]

Encoding of [0]

s4

4521980680

COMP9021 Principles of Programming

