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Running Time of Programs
aka “Big-Oh Notation”

Textbook (R & W) - Ch. 4, Sec. 4.3, 4.5

Problem set 8

Supplementary Exercises Ch. 4 (R & W)
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Lecture 7 recap

Recursion: Capturing “arbitrarily large in a finite description”

Recursion in algorithms

Recursion in data structures

Analysis of recursion

Recursive sequences
Structural induction
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Motivation

Want to compare algorithms – particularly ones that can solve
arbitrarily large instances.

We would like to be able to talk about the resources (running
time, memory, energy consumption) required by a
program/algorithm as a function f (n) of the size n of its input.

Example

How long does a given sorting algorithm take to run on a list of n
elements?
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Problem 1: the exact running time may depend on

compiler optimisations

processor speed

cache size

Each of these may affect the resource usage by up to a linear
factor, making it hard to state a general claim about running times.
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Problem 2: Many algorithms that arise in practice have resource
usage that can be expressed only as a rather complicated function.
E.g.

f (n) = 20n2 + 2n log(n) + (n − 100) log(n)2 +
1

2n
log(log(n))

The main contribution to the value of the function for “large”
input sizes n is the term of the highest order:

20n2

We would like to be able to ignore the terms of lower order

2n log(n) + (n − 100) log(n)2 +
1

2n
log(log(n))
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Order of Growth

Example

Consider two algorithms, one with running time f1(n) = 1
10n

2, the
other with running time f2 = 10n log n (measured in milliseconds).

Input size f1(n) f2(n)

100 0.01s 2s
1000 1s 30s
10000 1m40s 6m40s
100000 2h47m 1h23m
1000000 11d14h 16h40h
10000000 3y3m 8d2h

Order of growth provides a way to abstract away from these two
problems, and focus on what is essential to the size of the
function, by saying that “the (complicated) function f is of roughly
the same size (for large input) as the (simple) function g”
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NB

Asymptotic analysis is about how costs scale as the input
increases.
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“Big-Oh” Asymptotic Upper Bounds
Definition

Let f , g : N→ R. We say that g is asymptotically less than f (or:
f is an upper bound of g) if there exists n0 ∈ N and a real
constant c > 0 such that for all n ≥ n0,

g(n) ≤ c · f (n)

Write O(f (n)) for the class of all functions g that are
asymptotically less than f .

Example

g(n) = 3n + 1 → g(n) ≤ 4n , for all n ≥ 1

Therefore, 3n + 1 ∈ O(n)
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Example

1

10
n2 ∈ O(n2) 10n log n ∈ O(n log n) O(n log n) ( O(n2)

The traditional notation has been

g(n) = O(f (n))

instead of g(n) ∈ O(f (n)).

It allows one to use O(f (n)) or similar expressions as part of an
equation; of course these ‘equations’ express only an approximate
equality. Thus,

T (n) = 2 · T
(n

2

)
+ O(n)

means

“There exists a function f (n) ∈ O(n) such that T (n) = 2T (n2 ) + f (n).”
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g=O(f)

f

g

n0

10

n0

g=O(f)

g

f

2.f
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Examples

5n2 + 3n + 2 = O(n2)

n3 + 2100n2 + 2n + 22
100

= O(n3)

Generally, for constants ak . . . a0,

akn
k + ak−1n

k−1 + . . .+ a0 = O(nk)
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“Big-Omega” Asymptotic Lower Bounds
Definition

Let f , g : N→ R. We say that g is asymptotically greater than f
(or: f is an lower bound of g) if there exists n0 ∈ N and a real
constant c > 0 such that for all n ≥ n0,

g(n) ≥ c · f (n)

Write Ω(f (n)) for the class of all functions g that are
asymptotically greater than f .

Example

g(n) = 3n + 1 → g(n) ≥ 3n , for all n ≥ 1

Therefore, 3n + 1 ∈ Ω(n)
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“Big-Theta” Notation

Definition

Two functions f , g have the same order of growth if they scale up
in the same way:
There exists n0 ∈ N and real constants c > 0, d > 0 such that for
all n ≥ n0,

c · f (n) ≤ g(n) ≤ d · f (n)

Write Θ(f (n)) for the class of all functions g that have the same
order of growth as f .

If g ∈ O(f ) (or Ω(f )) we say that f is an upper bound (lower
bound) on the order of growth of g ; if g ∈ Θ(f ) we call it a tight
bound.
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Observe that, somewhat symmetrically

g ∈ Θ(f ) ⇐⇒ f ∈ Θ(g)

We obviously have

Θ(f (n)) ⊆ O(f (n)) and Θ(f (n)) ⊆ Ω(f (n)),

in fact
Θ(f (n)) = O(f (n)) ∩ Ω(f (n)).

At the same time the ‘Big-Oh’ is not a symmetric relation

g ∈ O(f ) 6⇒ f ∈ O(g),

but

g ∈ O(f )⇔ f ∈ Ω(g)
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More Examples

All logarithms logb x have the same order, irrespective of the
value of b

O(log2 n) = O(log3 n) = . . . = O(log10 n) = . . .

Exponentials rn, sn to different bases r < s have different
orders, e.g. there is no c > 0 such that 3n < c · 2n for all n

O(rn) ( O(sn) ( O(tn) . . . for r < s < t . . .

Similarly for polynomials

O(nk) ( O(nl) ( O(nm) . . . for k < l < m . . .
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Here are some of the most common functions occurring in the
analysis of the performance of programs (algorithm complexity):

1, log log n, log n,
√
n,
√
n(log n)k ,

√
n(log n)2, . . .

n, n log log n, n log n, n1.5, n2, n3, . . .
2n, 2n log n, n2n, 3n, . . .
n!, nn, n2n, . . . , nn

2
, n2

n
, . . .

Notation: O(1) ≡ const, although technically it could be any
function that varies between two constants c and d .
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Exercise

4.3.5 True or false?
(a) 2n+1 = O(2n) — true
(b) (n + 1)2 = O(n2) — true
(c) 22n = O(2n) — false
(d) (200n)2 = O(n2) — true

4.3.6 True or false?
(b) log(n73) = O(log n) — true
(c) log nn = O(log n) — false
(d) (

√
n + 1)4 = O(n2) — true
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Analysing the Complexity of Algorithms

We want to know what to expect of the running time of an
algorithm as the input size goes up. To avoid vagaries of the
specific computational platform we measure the performance in the
number of elementary operations rather than clock time.
Typically we consider the four arithmetic operations, comparisons,
and logical operations as elementary; they take one processor cycle
(or a fixed small number of cycles).

A typical approach to determining the complexity of an algorithm,
i.e. an asymptotic estimate of its running time, is to write down a
recurrence for the number of operations as a function of the size of
the input.
We then solve the recurrence up to an order of size.
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Example: Insertion Sort

Consider the following recursive algorithm for sorting a list. We
take the cost to be the number of list element comparison
operations.
Let T (n) denote the total cost of running InsSort(L)

InsSort(L):
Input list L[0..n − 1] containing n elements

if n ≤ 1 then return L cost = 0
let L1 = InsSort(L[0..n − 2]) cost =T (n − 1)
let L2 = result of inserting element L[n − 1] into L1 (sorted!)

in the appropriate place cost≤ n − 1
return L2

T (n) = T (n − 1) + n − 1 T (1) = 0
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Solving the Recurrence

Unwinding T (n) = T (n − 1) + (n − 1), T (1) = 0

T (n) = T (n − 1) + (n − 1)
= T (n − 2) + (n − 2) + (n − 1)
= T (n − 3) + (n − 3) + (n − 2) + (n − 1)
...

= T (1) + 1 + . . .+ (n − 1)
= 0 + 1 + . . .+ (n − 1)

= n(n−1)
2

= O(n2)

Hence, Insertion Sort is in O(n2)
We also say: “The complexity of Insertion Sort is quadratic.”
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Exercise

Linear recurrence

T (n) = T (n − 1) + g(n), T (0) = a

has the precise solution

T (n) = a +
n∑

j=1

g(j)

Give a tight big-Oh upper bound on the solution if g(n) = n2

T (n) = a +
n∑

j=1

j2 = a +
n(n + 1)(2n + 1)

6
= O(n3)
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A General Result

Recurrences for algorithm complexity often involve a linear
reduction in subproblem size.

Theorem

(case 1) T (n) = T (n − 1) + bnk

solution T (n) = O(nk+1)

(case 2) T (n) = cT (n − 1) + bnk , c > 1 :
solution T (n) = O(cn)

This contrasts with divide-and-conquer algorithms, where we solve
a problem of size n by recurrence to subproblems of size n

c for
some c (often c = 2).
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A Divide-and-Conquer Algorithm: Merge Sort

MergeSort(L):
Input list L of n elements

if n ≤ 1 then return L cost = 0
let L1 = MergeSort(L[0 ..

⌈
n
2

⌉
− 1]) cost =T (n2 )

let L2 = MergeSort(L[
⌈
n
2

⌉
.. n − 1]) cost =T (n2 )

merge L1 and L2 into a sorted list L3 cost≤ n − 1
by repeatedly extracting the least element from L1 or L2

(both are sorted!) and placing in L3
return L3

Let T (n) be the number of comparison operations required by
MergeSort(L) on a list L of length n

T (n) = 2T
(n

2

)
+ (n − 1) T (1) = 0
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Solving the Recurrence

T (n) = 2T
(n

2

)
+ (n − 1), T (1) = 0

T (1) = 0
T (2) = 2T (1) + (2− 1) = 0 + 1
T (4) = 2T (2) + (4− 1) = 2(0 + 1) + (4− 1) = 4 + 1
T (8) = 2T (4) + (8− 1) = 2(4 + 1) + (8− 1) = 16 + 1
T (16) = 2T (8) + (16− 1) = 2(16 + 1) + (16− 1) = 48 + 1
T (32) = 2T (16) + (32− 1) = 2(48 + 1) + (32− 1) = 128 + 1

Value of n 4 8 16 32

T (n) 5 17 49 129

Ratio 1 2 3 4

Conjecture: T (n) = n(log2 n − 1) + 1 for n = 2k (Proof?)
Hence, Merge Sort is in O(n log n)
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Exercise

Give a tight big-Oh upper bound on the solution to the
divide-and-conquer recurrence

T (n) = T
(n

2

)
+ g(n), T (1) = a

for the case g(n) = n2

T (n) = n2+
(n

2

)2
+
(n

4

)2
+. . . = n2

(
1+

1

4
+

1

16
+. . .

)
= O(

4

3
n2) = O(n2)
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Master Theorem
Theorem

The following cases cover many divide-and-conquer recurrences
that arise in practice:

T (n) = dα · T
(n
d

)
+ Θ(nβ)

(case 1) α > β
solution T (n) = O(nα)

(case 2) α = β
solution T (n) = O(nα log n)

(case 3) α < β
solution T (n) = O(nβ)

The situations arise when we reduce a problem of size n to several
subproblems of size n/d. If the number of such subproblems is dα,
while the cost of combining these smaller solutions is nβ, then the
overall cost depends on the relative magnitude of α and β.
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Master Theorem: Examples

Example

T (n) = T
(n

2

)
+ n2, T (1) = a

Here d = 2, α = 0, β = 2, so we have case 3 and the solution is

T (n) = O(nβ) = n2

Example

Mergesort has

T (n) = 2T
(n

2

)
+ (n − 1)

recurrence for the number of comparisons.
Here d = 2, α = 1 = β, so we have case 2, and the solution is

T (n) = O(nα log(n)) = O(n log(n))
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Exercise

Solve T (n) = 3nT
(
n
2

)
with T (1) = 1

Let n ≥ 2 be a power of 2 then

T (n) = 3n · 3 n
2 · 3 n

4 · 3 n
8 · . . . = 3n(1+

1
2
+ 1

4
+ 1

8
+...) = O(32n)
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Exercise
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Exercise

4.3.22 The following algorithm raises a number a to a power n.

p = 1
i = n
while i > 0 do

p = p ∗ a
i = i − 1

end while
return p

Determine the complexity (no. of comparisons and arithmetic ops).
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Solution

4.3.22 Number of comparisons and arithmetic operations:

cost(n = 1) = 4 (why?)

cost(n > 1) = 3 + cost(n − 1)

This can be described by the recurrence
T (n) = 3 + T (n − 1) with T (1) = 4

Solution: T (n) = O(n)
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Exercise

4.3.21 The following algorithm gives a fast method for raising a
number a to a power n.

p = 1
q = a
i = n
while i > 0 do

if i is odd then
p = p ∗ q

q = q ∗ q
i =

⌊
i
2

⌋

end while
return p

Determine the complexity (no. of comparisons and arithmetic ops).
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Solution

4.3.21 Number of comparisons and arithmetic operations:

cost(n = 1) = 6 (why?)

cost(n > 1) = 4 + cost(
⌊
n
2

⌋
) if n even

cost(n > 1) = 5 + cost(
⌊
n
2

⌋
) if n odd

This can be described by the recurrence
T (n) = 5 + T (n2 ) with T (1) = 6

Solution: T (n) = O(log n)
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Application: Efficient Matrix Multiplication

The running time of a straightforward algorithm for the
multiplication of two n × n matrices is O(n3). (Why?)

Matrix mutliplication can also be carried out blockwise:

[
[A] [B]
[C] [D]

]
·
[

[E] [F]
[G] [H]

]
=

[
[AE + BG] [AF + BH]
[CE + DG] [CF + DH]

]

This can be implemented by a divide-and-conquer algorithm,
recursively computing eight size-n2 matrix products plus a few
O(n2)-time matrix additions.
Determine a recurrence to describe the total running time!

T (n) = 8 · T
(n

2

)
+ O(n2)

Solution (Master Theorem)? O(n3)
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Application: Efficient Matrix Multiplication
Strassen’s algorithm improves the efficiency by some clever algebra:

X =

[
[A] [B]
[C] [D]

]
Y =

[
[E] [F]
[G] [H]

]

X · Y =

[
[P5 + P4 − P2 + P6] [P1 + P2]
[P3 + P4] [P1 + P5 − P3 − P7]

]

where

P1 = A(F−H) P3 = (C + D)E P5 = (A + D)(E + H)
P2 = (A + B)H P4 = D(G− E) P6 = (B−D)(G + H)

P7 = (A− C)(E + F)

Its total running time is described by the recurrence

T (n) = 7 · T
(n

2

)
+ O(n2) (= O(nlog2 7) ' O(n2.807))
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Summary

“Big-Oh” notation O(f (n)) for the class of functions for
which f (n) is an upper bound; Ω(f (n)) and Θ(f (n))

Analysing the complexity of algorithms using recurrences

Solving recurrences

General results for recurrences with linear reductions (slide 28)
and exponential reductions (“Master Theorem”)
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