Introduction to ROS 2

(continued)

COMP3431/COMP9434

Robot Software Architectures



ROS2 Worskspace

colcon_ws
- build
- install
- log
- src (Your packages will go in here)
- my_package
- CMAKELists.txt
- include
- package.xml
- SIC

- myfile.cpp



Creating a package

First move into the src of your work space:
cd ~/turtlebot3_ws/src

To create a package run the code :

ros2 pkg create --build-type ament_cmake <package_name>

Example:

ros2 pkg create --build-type ament_cmake my_package



Building a workspace

Use colcon build to build the project:
$ colcon build

If installing natively you need to install colcon:
$ sudo apt install python3-colcon-common-extensions



package.xml

e This is where you put the dependencies
« what packages does your package depend on?
e E.g. standard for C++

<depend>rclcpp</depend>

<depend>std msgs



CMakeLists.txt

o If writing in C++, also need to edit CMakelLists.txt

e E.g. Add the packages we need to find:

find package(rclcpp REQUIRED)
find package(std msgs REQUIRED)



CMakeLists.txt

 Also include the source files you will write your
programs in

« A simple publisher might have:

add executable(talker src/publisher member function.cpp)
ament target dependencies(talker rclcpp std msgs)

« The executable called talker



CMakeLists.txt

Move the executable to a place where ROS can find and run it

install(TARGETS
talker

DESTINATION lib/${PROJECT_NAME))



Building the workspace

» First move into the root of your work space:
cd ~/turtlebot3 ws

« Check to see if you have any missing dependencies (good practice
but not required)

rosdep install -i --from-path src --rosdistro foxy -y

« Use colcon build to build the project:

colcon build



Running the code

e Must source setup for your workspace in new
terminal

« cd to workspace directory
« To source workspace run:

source install/setup.bash
e To run node:

ros2 run cpp pubsub talker



ROS2 Visualisation

- To debug the connections between nodes use:
$ rqt_graph
-Visualises the node graph — and topic connections
- Rviz2 is the main visualisation tool for ROS:
$ rviz2
-Provides plugins architecture for visualising different topics:
- Videos
- Map of environment and localised robot
- Point cloud within the map



ROS2 Visualisation

- To see if your node is punishing to a topic:
$ ros2 topic list

 To see what’s being published on a topic:

$ ros2 topic echo/<topic>



RQT

e rqt is a graphical front end to commands like list and
echo

e It let’s you generate message and listen to topic so
you can debug individual nodes



ROS 2 Bags

- Possible to save the data produced by topics for later analysis and playback:
$ ros2 bag record -a

-Creates a time stamped bag file in the current directory.

—Warning: “-a” records all topics so will generate a lot of data.

- Often useful to only record only direct sensor inputs (e.g., laser scans and timing) because the
other topics will be generated from processing sensor data.

- To replay:

$ ros2 bag play <bagfile>

- Useful if you are testing different interchangeable node (e.g., mapping with gmapping, hector
SLAM, or Cartographer).

- Note: SLAM (Simultaneous Localisation and Mapping) algorithms build a map while at the same
time localising. Very widely used in robotics.



ROS Tools — Simulator

Two standard simulators; Stage (2D) and
Gazebo (3D)

https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/#gazebo-simulation

The Gazebo guide - easy guide to get simulator
up and running.

$ export TURTLEBOT3 MODEL=waffle pi

$ ros2 launch turtlebot3 gazebo turtlebot3 house.launch.py


https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/#gazebo-simulation

Launch Files

from launch import LaunchDescription
from launch_ros.actions import Node

def generate_launch_description():
return LaunchDescription([

Node(
package="turtlesim’,
namespace="turtlesim1’,
executable="turtlesim_node’,
name='sim'

),

Node(
package="turtlesim’,
namespace="turtlesim?2’,
executable="turtlesim_node’,
name='sim'

),

1)

ros2 launch <package> <launch file>

T wIicalc Lwu I11UUCTO 11JVIIT oAlllc<

executable
- Give each a separate namespace

 turtlesim2 mimics turtlesimi
movements

Node(

)

package='"turtlesim’,

executable="'mimic’,

name='mimic’,

remappings=|
('/input/pose’, '/turtlesim1/turtlel/pose'),
('/output/cmd_vel', '/turtlesim2/turtlel/cmd_vel'),

]



Frames of Reference

- ROS standardises the transformation model between different coordinate
frames of reference.

- Right Hand Rule, X forward (XYZ < RGB)

- Tree structure:
—/map
- /base_link
—/base_footprint
—/laser

- Example: laser detected object is relative to laser frame. Need to transform
to map coordinate to know where it is on the map.

- https://docs.ros.org/en/humble/Tutorials/Tf2/Tf2-Main.html#tf2main



https://docs.ros.org/en/humble/Tutorials/Tf2/Tf2-Main.html#tf2main

Many Different Sensors

- Laser Scanner

- Camera

- IR Cameras

+ Depth Cameras
+ Motor

- Pressure Sensor
- Compass

- Accelerometer

+ IMU (Inertial Measurement Unit) — detects linear acceleration using
accelerometer and rotation using gyroscope

+ Audio
ROS provides standardised data structures for some of these sensors.



L aser Scanners

sensor_msgs/LaserScan

- A laser is rotated
std_msgs/Header header
through a plane Lint32 seq

time stamp

- Distance (& intensity) string frame _id

float32 angle_min

measurements taken a2 angle_max

I I float32 angle_increment
perIOd ICal Iy float32 time_increment
float32 scan_time
- 180-270 degreeS float32 range_min

float32 range_max
float32[] ranges
float32[] intensities




C a m e ra S sensor_msgs/Image
. Stream images std_msgs/Header header
uint32 seq
. . ti t
- Various encodings string frame. id
uint32 height
used (RGB, Mono, it
UYVY, Bayer) string encoding
uint8 is_bigendian
. uint32 step
ROS haS no uint8[] data

conversion functions

#include <sensor_msgs/image_encodings.h>




Depth Cameras

- Usually produce
Mono16 images

- Typically turned into
point clouds

» Depth measurements
can be radial or axial

sensor_msgs/PointCloud

std_msgs/Header header

uint32 seq

time stamp

string frame_id
geometry_msgs/Point32[] points

float32 x

float32 y

float32 z
sensor_msgs/ChannelFloat32[] channels

string name

float32[] values




Motor Positions

- Many motors report
their positions

- Used to produce
transformations
between frames of
reference

sensor_msgs/JointState

std_msgs/Header header
uint32 seq
time stamp
string frame_id

string[] name

float64[] position

float64[] velocity

float64]] effort




Lab Exercise

» Setup up connection to your robot
- Test that you can:

- teleoperate

- use Rviz to see state of robot

- try adding camera image

* run cartographer
- Begin working on wall follower



RoboCup




RoboCup@Home




RoboCup@Home

UT Austin Villa
RoboCup@Home 2019 Qualification



Project

Based on RoboCup@Home
1. Explore and map a home environment (first stage)
2. Use vision to recognise common objects in home

3. Given a goal, create and execute a plan (sequence of
actions) to achieve the goal



Robotics Laboratory




Interested in RoboCup

e Soccer:

o https://robotics.cse.unsw.edu.au/
robocupsoccer-standard-platform-league/
runswift-get-involved/

e @HOMe:
o Talk to any of your COMP3431/9434 tutors



https://robotics.cse.unsw.edu.au/robocupsoccer-standard-platform-league/runswift-get-involved/
https://robotics.cse.unsw.edu.au/robocupsoccer-standard-platform-league/runswift-get-involved/
https://robotics.cse.unsw.edu.au/robocupsoccer-standard-platform-league/runswift-get-involved/

