
38 COMMUNICATIONS OF THE ACM | DECEMBER 2019 | VOL. 62 | NO. 12

practice

DO YOU HAVE disdain for your customers? Do you
wish they would go away? When you interact with
customers are you silently fantasizing about them
switching to your competitor’s product? In short, do
you hate your customers?

Maybe you should try using your company’s external
APIs to show your disdain. What? How could you do that?

In this article, I document a number of industry
best practices designed to show customers how
much you hate them. All of them are easy to
implement. Heck, your company may be doing many
of them already.

Why would you want to use your company’s API to
show your hate? I think the answer is quite simple:
Customers are jerks.

Darn customers! Always using our services!

Bothering our salespeople for quotes!
Creating more work for the accounts
receivable department by sending us
money. Needing customer support for
stupid reasons such as: “The documen-
tation is wrong,” or “This feature is bro-
ken,” or “Your product killed my cat.”

See? Jerks.
Older readers may long for the good

old days when companies that were ac-
tual monopolies would pretend to love
their customers. Now we all work for
companies that don’t admit to being
monopolies and actually hate their cus-
tomers. Boy, how times have changed.

Technique #1: Don’t Have an API
Not having an API is a good start. It
also requires the least effort of all the
techniques. All you have to do is think
about adding an API, then not do it.

What good is an API, anyway? Pri-
marily it allows customers to imple-
ment features that you didn’t think
of. “Look, buddy, if we didn’t think of
the feature, it couldn’t possibly be very
good. We hire the best and brightest
to think of new features all day long
and not implement them. Don’t horn
in on their turf.”

APIs also permit customers to use a
lot more of your product. If they have to
click, click, click to use your product,
they are going to use it only a little. If an
API exists, they can automate their use
of your product, which would let them
use it a lot more. They could automate
provisioning for their entire company.
They could build entire new applica-
tions based on your API. Just think how
much more of your product they would
be able to consume with an API.

How totally rude! If they use your
product more, you will have to buy more
servers, spend more time cashing their
checks, and, heaven forbid, maybe start
hosting conferences where people use
terms such as leverage, hackathons, and
chalk talks. Conferences? Ick.

Technique #2: Make Signups Difficult
OK, you have lost the battle and your
company wants to build an API anyway.
At least you can press the brakes a bit

API Practices
If You Hate
Your
Customers

DOI:10.1145/3369748

	� Article development led by
queue.acm.org

Application programming interfaces
speak louder than words.

BY THOMAS A. LIMONCELLI

http://dx.doi.org/10.1145/3369748

DECEMBER 2019 | VOL. 62 | NO. 12 | COMMUNICATIONS OF THE ACM 39

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

,
U

S
I

N
G

 P
H

O
T

O
 F

R
O

M
 S

H
U

T
T

E
R

S
T

O
C

K

by requiring a complicated signup pro-
cess. Self-service onboarding is hedo-
nistic and could lead to dancing.

There are a variety of ways to make on-
boarding arduous for customers. Some
companies require that you open a ticket
or speak to an actual human being. That
will make any introverted developer
think twice before using your API.

Some companies want you to fill out
an application form to be able to write
an application. Making people beg to
use your product is a good way to dis-
courage new users.

For best results, the questions
on such forms should be written by
someone who previously worked as a
CIA interrogator: Why do you want to
use this API? What will your applica-
tion do? Where were you on the night

of the 12th? What’s your mother’s
maiden name? Can you prove she’s re-
ally your mother?

One such form I filled out required
me to describe the application I
planned to write. Six months later a
SWAT team of auditors appeared at my
house, weapons blazing, demanding
I show them my code. They wanted to
verify I had not lied. If my application
didn’t match my application, then I
could be sent to application jail.

OK, that’s not a true story. I did,
however, once see that question on a
form. Sadly, I didn’t have a particular
application in mind. I was going to ex-
plore the API and write a few simple
Python-based utilities to automate
some daily tasks. I didn’t want to ex-
plain all that, however, for fear my

answer would not be good enough
for whoever was judging my applica-
tion. In a panic, I simply described
my application as “dark purple with
white highlights.” A few weeks later
my application was approved. So far, I
haven’t been visited by any auditor SWAT
teams, but as a precaution my code edi-
tor has been themed in dark purple with
white highlights ever since.

Sadly, some companies do not un-
derstand how to make signups diffi-
cult. They either make the process en-
tirely self-service, or don’t require any
kind of signup process at all. When will
they ever learn?

Technique #3: Charge Extra. A Lot.
Another way to send customers pack-
ing is to charge a lot for your API.

SO I’M LIKESO I’M LIKE

“YOUR CALL IS VERY
 IMPORTANT TO US.”

“YOUR CALL IS VERY
 IMPORTANT TO US.”

40 COMMUNICATIONS OF THE ACM | DECEMBER 2019 | VOL. 62 | NO. 12

practice

Why would anyone do that?
Debugging is boring. Wouldn’t you

rather appeal to customers who write
bug-free code on the first try?

To really show disdain for your cus-
tomers, use a proprietary protocol so
that language support is limited to the
client libraries you provide, preferably
as binary blobs that are never updated.
If you design it carefully, a proprietary
protocol can be difficult to understand
and impossible to debug, too.

Alternatively, you can use SOAP
(Simple Object Access Protocol). Ac-
cording to Wikipedia, SOAP “can be
bloated and overly verbose, making it
bandwidth-hungry and slow. It is also
based on XML, making it expensive to
parse and manipulate—especially on
mobile or embedded clients” (https://
en.wikipedia.org/wiki/SOAPjr). Sounds
like a win-win!

Technique #6: Permit
Only One API Key
One of my favorite ways to show dis-
dain for a customer is to permit only
one API key at a time. Anything you can
do to make the customer’s operations
full of toil and cognitive load says, “I
don’t care about you.”

An API key is basically a password that
identifies and authenticates a customer.
You have only one password for your
email account; why would you need more
than one? That would be weird, right?

Eventually, customers will need
to change, or “rotate,” their API key.
Maybe it was leaked. Maybe an em-
ployee left the company and has a
copy of the key. Maybe they just need
to rotate the key yearly as part of their
security policy.

Here’s the hilarious part. If you per-
mit only one API key at a time, you’ve
created a catch-22 situation. Custom-
ers can’t change the API key on the
server, because the clients will lose ac-
cess until they’ve been updated, too.
They can’t change the clients first be-
cause the server won’t yet know about
the new API key. If there are multiple
clients, then you’re basically expect-
ing your customers to flash-cut all
clients at the exact same time. Basic
physics says that can’t happen. Even
if it could happen, there’s no way to
canary the new key; you’ve added de-
ployment risk and complexity where
nobody would have expected.

Remember when mobile phone
companies charged $100 for a $2 data
cable? Why can’t APIs be like that?
You have the potential to inflict a sur-
charge on anyone who dares to want
to make efficient use of your product.
Don’t squander this opportunity!

It is normal to charge for your ser-
vice, or include API access only with the
enterprise edition. In fact, that’s a good
way to keep out spammers or others
who would abuse the service.

But that’s not what I’m talking
about here. I mean you should charge a
lot extra for the API. A. Lot. Of. Money.

Make it a revenue stream instead of
a way to encourage people to use your
product. Make API access so expensive
that the sales department thinks API
stands for additional profit incentive.

This is a lot easier for on-premises
software. There the SDK can be sold
separately, perhaps using an otherwise
unadvertised SKU. Require manage-
ment approval, a blessing from the
pope, and a note from your mother.

Technique #4: Hide the API
Docs from Search Engines
Nothing says “We don’t actually want you
to use our API” like making your API doc-
umentation invisible to search engines.
The “build, run, debug” cycle of decades
ago has been replaced by “run, crash,
Google, fix.” If your API documentation
doesn’t appear in search engines, you’ve
sent your customers back to the old days.

Luckily, this can be easily done by
putting the documentation behind a
login screen. If Google can’t crawl it,
it can’t index it. Googling for answers
about your API will be impossible.

Requiring some kind of registration
or login to access your API documen-
tation also prevents your competition
from examining your API and learn-
ing from it. No competitors have ever
thought to register using their home
address, or to share a password from a
friend, right? Never. They are not that
smart. It could never possibly happen.
You would certainly never do that, so
why would they?

If your management refuses to
hide documentation behind a login,
consider making your documenta-
tion a PDF file. This is nearly as frus-
trating. Most search engines can peer
into PDFs, but not if you print the doc-
umentation and scan in each page as
a bitmap. If search engines OCR such
documents, just reformat your text in
columns, or tilt the document when
you scan it. Be strong, young soldier!
With a little elbow grease and a lot of
moxie, you can stay one step ahead of
anyone who wants to make it easy to
access your documentation.

Technique #5: Use a Terrible Protocol
Many APIs use JSON:API (https://jsona-
pi.org) or JSON-RPC (www.jsonrpc.
org). They are lightweight, easy to use,
and easy to debug.

What does your API reveal about your feelings toward your customers?

Technique Treat customers with disdain Show customers love

1 Don’t have an API Have an API

2 Make signups difficult, users must justify
their request

Self-service onboarding

3 Exorbitant fees for the privilege of API
access

Enable API access for free or as part
of an “enterprise-level” package

4 API documentation behind login page or
otherwise hidden from search engines

API documentation freely accessible
and referenced by public search engines

5 Use a proprietary or terrible protocol Use an industry-standard protocol such
as JSON:API or gRPC (https://grpc.io)

6 Permit only one API key Permit multiple API keys for easy rotation

7 Tempt fate by maintaining documentation
manually

Keep documentation in sync
with code using automated systems
such as Swagger or gRPC

8 Ignore the infrastructure as code (IaC)
revolution

Make IaC a top priority: Provide officially
supported modules for Terraform, Chef,
Puppet, Chocolatey, and similar systems

9 Design APIs to be non-idempotent
whenever possible

Design APIs to be idempotent
whenever possible

DECEMBER 2019 | VOL. 62 | NO. 12 | COMMUNICATIONS OF THE ACM 41

practice

They say the secret to great comedy
is timing. Imagine the hilarity of a cus-
tomer using your product for a year be-
fore realizing key rotation is logistically
impossible. Surprise!

Hilarity? Or disdain. Whatever.
Some companies do not under-

stand comedy, or how to show disdain
for their customers. They permit cus-
tomers to add a new key on the server,
slowly roll out the new key to all clients,
testing along the way, then deactivate
the old key. Gross!

Technique #7: Maintain
Documentation Manually
As your API evolves it is possible for
the API and the documentation to get
out of sync. Nothing says “I don’t care
about my users” like building a system
that encourages this kind of error.

Or you can go for the trifecta: an API
that is out of sync with the documenta-
tion, which is out of sync with the client
libraries you provide.

Sure, there are systems such as
Swagger (https://swagger.io/tools/open-
source/) and gRPC (www.grpc.io) that
let you define APIs and their documen-
tation in one place, then automatically
generate the documentation, server
stubs, client SDK bindings in multiple
languages, and so on. But what’s the fun
in doing work once and letting comput-
ers generate all the downstream arti-
facts you need for free? Consistency is
for simpletons.

Technique #8: Ignore
The IaC Revolution
The ability to treat infrastructure as
code (IaC) is becoming a top priority for
operational teams. It not only makes
operations easier, more testable, and
more reliable, but also paves the path
to security compliance best practices
required by the likes of SOC2 (Service
Organization Controls) and PCI (pay-
ment card industry).

Some companies waste their time
making it easy for customers to do this.
They provide officially supported mod-
ules for accessing their services from
Terraform, Ansible, Chef, Puppet,
and similar systems. They make their
client-side software easy to consume
by hosting repositories for multiple
Linux distributions, and they provide
a Chocolatey feed for easy installation
on Windows.

It’s much simpler to ignore all of
these technologies and hope that the
open-source community will provide.
Yes, this may result in a confusing array
of incompatible options, but you can
trumpet the benefits of “user choice.”

Technique #9: Don’t Be Idempotent
I’ve saved the nerdiest technique for last.

An operation is idempotent if per-
forming it multiple times yields the same
result as performing it exactly once.

Suppose there’s an API call that cre-
ates a virtual machine (VM). If this API
call is idempotent, the first time we call
it the VM is created. The second time it
is called the system detects that the VM
already exists and simply returns with-
out error. If this API call is non-idem-
potent, calling it 10 times will result in
10 VMs being created. (Note: the oppo-
site of idempotent isn’t potent.)

 Similarly, an idempotent delete
call will remove the object; subsequent
calls will quietly do nothing and re-
turn a success status code. If the call
were non-idempotent, the second
call would return a “not found” error,
which would confuse the developers
and potentially make them question
the meaning of existence.

Why would anyone issueo the same
API call more than once? When deal-
ing with RPCs (remote procedure
calls), the response may be success,
failure, or no reply at all. If you don’t
hear back from the server, you have to
retry the request.

With an idempotent protocol you can
simply resend the request. With a non-
idempotent protocol, every action must
be followed by code that discovers the
current state and does the right thing to
recover. Putting all that recovery logic in
the client is a layering violation.

In the VM example, you would
have to query the inventory and see
if the VM you asked to create exists.
If it does exist, you must make sure
it was created properly or is in a good
state. If it is in a bad state, you repair
it or delete it and start over. The list of
potential conditions and edge cases
goes on and on.

That was a simple example. Re-
covery from other API calls can be
even more complex. The attempts to
recover from failures may also fail.
Now you are faced with an infinitely
recursive world of failures, failed re-

Nothing says
“We don’t
actually want you
to use our API”
like making
your API
documentation
invisible to
search engines.

42 COMMUNICATIONS OF THE ACM | DECEMBER 2019 | VOL. 62 | NO. 12

practice

If networks
are unreliable,
then a network
API is inherently
unreliable, too.
A request
can be lost
on its way to
the server and
never executed.

covery attempts, and on and on. Code
that looks sane on first glance ends
up creating zero VMs, or three VMs,
or more. With multiple simultaneous
clients, you must deal with timing,
locking problems, crossed messages,
and a nest of heisenbugs.

Putting this logic in the client li-
brary ensures the client will need more
frequent updating. Requiring the user
to implement the recovery logic is de-
lightfully evil: how would they even
know what they should implement?

These problems are reduced or elim-
inated when the API is idempotent.

Why not simply use a more reliable
network? Oh, that’s just adorable. Net-
works are never reliable. They can’t be.
Thinking that networks are reliable is
the first fallacy of distributed comput-
ing (https://en.wikipedia.org/wiki/Fal-
lacies_of_distributed_computing).

If networks are unreliable, then a
network API is inherently unreliable,
too. A request can be lost on its way to
the server and never executed. Execu-
tion may be complete, but the reply
back to us gets lost. The server may
reboot during the operation. The cli-
ent might reboot while sending the
request, while waiting for the request,
or after receiving the request but be-
fore local state is stored on stable
storage. So many edge cases!

In distributed computing every-
thing can fail. If you hate your cus-
tomers, you can make sure that deal-
ing with failure is burdensome, error
prone, and just plain impossible to
get 100% right. Customers will always
be fixing edge cases instead of doing
productive work.

Don’t spoil the fun. Show your dis-
dain for customers with non-idempo-
tent APIs.

Summary. The accompanying table
includes a summary of these tech-
niques along with ways that companies
may accidentally provide good service
to their API customers.

Getting buy-in. Your coworkers may
resist some of these techniques. How
do you get them on board?

You could have them read this arti-
cle, although that could backfire. If the
wrong person reads it, he or she might
push back and do the opposite.

If that happens, you might end up
with a great API that is easy to get start-
ed with, easy to use, has great docu-

mentation that is easy to access, and
helps people write code that works the
first time and every time.

Shirley, You Can’t Be Serious!
This article is written in jest to make
a point. Although some companies
do the bad things set forth here, they
don’t do them to hurt customers. In
my experience, engineers take pride
in doing good work and impressing
customers with well-made systems.
I trust that when companies do the
naughty things in this article, it is out
of ignorance, lack of resources, or an
impossible deadline.

Luckily, in some cases the good
practice is easier to implement than
the bad practice. Creating an authenti-
cation system to restrict access to doc-
umentation is more difficult than mak-
ing the documentation freely available.
Putting all documentation on one long
page so that it can be searched using
Ctrl-F is easier than putting each API
call on a separate page.

Sadly, some of these good practices
do require a lot of work. Creating a self-
service onboarding system is not easy.
It requires usability testing and revi-
sions. Ease of use is never achieved on
the first guess.

Justifying the resources required
for all these good practices may be
difficult, especially when an API isn’t
used by many of your customers.
“What’s the ROI when hardly anyone
uses our API?” your management may
ask. I look at it differently: Maybe us-
age is low because you haven’t done
these things.	

 Related articles
 on queue.acm.org

Programmers are People, Too
https://queue.acm.org/detail.cfm?id=1071731

Forked Over
Kode Vicious
https://queue.acm.org/detail.cfm?id=2611431

Managing Technical Debt
Eric Allman
https://queue.acm.org/detail.cfm?id=2168798

Thomas A. Limoncelli is the SRE manager at Stack
Overflow Inc. in New York City. His books include The
Practice of System and Network Administration, The
Practice of Cloud System Administration, and Time
Management for System Administrators. He blogs at
EverythingSysadmin.com and tweets at @YesThatTom.

Copyright held by author/owner.
Publication rights licensed to ACM.

