
1

Buses and Parallel

Input/Output

Lecturer: Sri Parameswaran

Notes by: Annie Guo

2

Lecture Overview

⚫ Buses

⚫ Computer buses

⚫ I/O Addressing

⚫ Memory mapped I/O

⚫ Separate I/O

⚫ Parallel input/output

⚫ AVR examples

3

Five Components of

Computers

Processor
(active)

Computer

Control
(“brain”)

Datapath
(“brawn”)

Memory
(passive)

(where
programs,
data live
when

running)

Devices

Input

Output

Keyboard

Mouse

Disk,

Display,

Printer

Disk

4

Buses
⚫ A collection of wires through which data is

transmitted from one of sources to destinations

⚫ All buses consist of three parts:
⚫ data bus

⚫ transfer actual data

⚫ address bus

⚫ transfer information about where the data should go.

⚫ control bus

⚫ transfer control signals

source 1

source 2

source n

dest 1

dest 2

dest n

5

Characteristics of Buses

⚫ For system or higher level designs, buses

can be characterized in

⚫ Bus width (in bits)

⚫ Determines how much data can be transmitted at a

time. E.g. 16 bits, 32 bits

⚫ Clock speed in MHz

⚫ Determines how often data can be transferred on the

busses

6

Data Bus

Address Bus

Control Bus

CPU

Parallel

I/O

Device

Serial

I/O

Device

Memory
I/O

Interface

Typical Computer Bus

Structure

7

Computer Buses

⚫ CPU is connected to memory and I/O devices via

data, address and control buses.

⚫ Data bus is bi-directional and transfers information

(memory data and instructions, I/O data) to and from

CPU.

⚫ Address bus is most often unidirectional because

the CPU is the only source of addresses.

⚫ Control bus carries all control signals required to

control the operation of the data transfer.

8

• • •

• • •

Data Bus
CPU

Multiple Destinations

Multiple Sources

Computer Buses (cont.)

⚫ Each line of a bus has multiple sources and

destinations. The bus transfers data from one

source each time.

9

Input Interface

⚫ Connects multiple data sources

⚫ Only one source data is sent to the bus at a time

⚫ Often implemented with three-state buffers
for data buses

⚫ For example,

⚫ a parallel, eight-bit input data is connected to eight
three-state gates whose enable lines are tied together

⚫ When the data is to sent to the bus the eight three-
state gates are enabled.

⚫ The open-collector gate is often used for
control signals such as request for interrupts

⚫ Since one way switch is often required.

15

CPU Timing Signals

⚫ CPU must provide timing and synchronization

so that the transfer of information occurs at

the right time.

⚫ CPU has its own clock.

⚫ I/O devices may have a separate I/O clock.

⚫ Typical timing signals include READ and WRITE.

16

CPU Clock

Address

Bus address from CPU valid

Data Bus data from device

valid

A

C

READ

Control

Signal

B

Typical CPU Read Cycle

17

Typical CPU Read Cycle

⚫ CPU places the address on the address bus

at point A.

⚫ The control signal READ is asserted at point

B to signal the external device that CPU is

ready to take the data from the data bus.

⚫ CPU reads the data bus at point C whether or

not the input device has made it ready

⚫ If NOT, some form of synchronization is required.

18

CPU Clock

Address

Bus address from CPU valid

Data Bus data from CPU

valid

A

B

WRITE

Control

Signal

DC

Typical CPU Write Cycle

19

Typical CPU Write Cycle

⚫ CPU places the address on the address bus at point

A.

⚫ The data bits are supplied by CPU at point B.

⚫ The control signal WRITE is asserted by CPU at

point C to signal the external device that the data is

ready to be taken from the data bus.

⚫ This signal is used to create the clock to latch the data at

the correct time.

⚫ Depending on the type of latch and when WRITE is

asserted, the data may be captured on the falling

edge or rising edge.

22

I/O Addressing

⚫ If the same address bus is used for both

memory and I/O, how does hardware

distinguish between memory reads/writes

and I/O reads/writes?

⚫ Two approaches:

⚫ Memory-mapped I/O.

⚫ Separate I/O.

⚫ AVR supports both.

23

Memory

I/O

Memory Mapped I/O

⚫ The entire memory address space is divided

into memory space and I/O space.

24

AVR Memory Mapped I/O

⚫ In AVR, 480 I/O

registers are mapped

into memory space

0x0020 ~ 0x01FF

⚫ 1 byte each

⚫ With such memory

addresses, accesses

to the I/O registers

use memory access

type of instructions.

25

Memory Mapped I/O (cont.)

⚫ Advantages:

⚫ Simpler CPU design.

⚫ No special instructions for I/O accesses.

⚫ Disadvantages:

⚫ I/O devices reduce the amount of memory space

available for application programs.

⚫ The address decoder needs to decode the full

address bus to avoid conflict with memory

addresses.

27

Separate I/O

⚫ Two separate spaces for memory and I/O.

⚫ Less expensive address decoders than those

needed for memory-mapped I/O (Why?)

⚫ Additional control signal, called IO/M, is

required to prevent both memory and I/O

trying to place data on the bus

simultaneously.

⚫ IO/M is high for I/O use and low for memory use.

⚫ Special I/O instructions are required.

29

Separate I/O (cont.)

⚫ In AVR, the first 64 I/O registers can also be

addressed with separate addresses 0x00 ~

0x3F

⚫ 1 byte each

⚫ With such separate addresses, the I/O

registers are accessed using I/O specific

instructions.

⚫ E.g. in and out

30

I/O Synchronization

⚫ CPU is typically much faster than I/O devices.

⚫ Therefore, synchronization between CPU and

I/O devices is required.

⚫ Two synchronization approaches:

⚫ Software synchronization.

⚫ Hardware synchronization.

31

Software Synchronization
Two software synchronization approaches:

⚫ Real-time synchronization

⚫ Uses a software delay to match CPU to the timing

requirements of the I/O device.

⚫ The timing requirement must be known

⚫ Sensitive to CPU clock frequency.

⚫ Wastes CPU time.

⚫ Polling I/O

⚫ A status register, with a DATA_READY bit, is added to

the device. The software keeps reading the status

register until the DATA_READY bit is set.

⚫ Not sensitive to CPU clock frequency.

⚫ Still waste CPU time, but CPU can do other tasks.

32

Handshaking I/O

⚫ A hardware synchronization approach with control

signal READY or WAIT.

⚫ For an input device, when CPU is asking for input data, the

input device will assert WAIT if the input data is NOT

available. When the input data is available, it will deassert

WAIT. While WAIT is asserted, CPU must wait until this

control signal is deasserted.

⚫ For an output device, when CPU is sending output data via

the data bus, the output device will assert WAIT if it is not

ready to take the data. When it is ready, it will deassert

WAIT. While WAIT is asserted, CPU must wait until this

control signal is deasserted.

34

Read Cycle with Wait States

35

Parallel Input/Output in AVR

⚫ Communication through ports

⚫ There are two special instructions designed

for parallel input/output operations

⚫ in

⚫ out

Source: Atmega2560

Data Sheet 36

Atmega2560 Pin Configuration

37

Source: Atmega2560 Data Sheet

38

AVR PORTs

⚫ Can be configured to receive data or send out data

⚫ Include physical pins and related circuitry to enable

input/output operations.

⚫ Different AVR microcontroller devices have different

port design

⚫ ATmega2560 has 100 pins, most of them form eleven

ports for parallel input/output.

⚫ Port A to Port H, Port J to Port L

⚫ Three I/O memory addresses (in data memory) are

allocated for each port

▪ PORTx for data register

▪ DDRx for data direction register

▪ PINx for port input pins

39

Load I/O Location to Register

⚫ Syntax: in Rd, A

⚫ Operands: 0 d 31, 0 A 63

⚫ Operation: Rd I/O(A)

⚫ Words: 1

⚫ Cycles: 1

⚫ Example:

in r25, 0x00 ; read from port A

40

Store Register to I/O Location

⚫ Syntax: out A, Rr

⚫ Operands: 0 r 31, 0 A 63

⚫ Operation: I/O(A) Rr

⚫ Words: 1

⚫ Cycles: 1

⚫ Example:

out 0x02, r16 ; write to port A

41

One-bit port circuitry

Source: Atmega2560 Data Sheet

42

How does it work?

⚫ Each port pin consists of three register bits

⚫ DDxn, PORTxn, and PINxn.

⚫ DDxn bits are accessed at the DDRx I/O address,

⚫ PORTxn bits at the PORTx I/O address

⚫ PINxn bits at the PINx I/O address.

⚫ The DDxn bit in the DDRx Register selects

the direction of this pin.

⚫ If DDxn is written logic one, Pxn is configured as

an output pin. If DDxn is written logic zero, Pxn is

configured as an input pin.

43

How does it work? (cont.)

⚫ When the pin is configured as an input pin,

the pull-up resistor can be

activated/deactivated.

⚫ To active pull-up resistor for input pin,

PORTxn needs to be written logic one.

44

Sample code for output

.include “m2560def.inc”

clr r16 ; clear r16
ser r17 ; set r17
out DDRA, r17 ; set Port A for output operation

out PORTA, r16 ; write zeros to Port A
nop ; wait (do nothing)
out PORTA, r17 ; write ones to Port A

45

Sample code for input

.include “m2560def.inc”

clr r15
out DDRA, r15 ; set Port A for input operation

in r25, PINA ; read Port A
cpi r25, 4 ; compare read value with constant
breq exit ; branch if r25=4
...

exit: nop ; branch destination (do nothing)

46

Example 1

⚫ Design a simple control system that can

control a set of LEDs to display a fixed

pattern.

48

Example 1 (solution)

⚫ Consists of a number of steps:

⚫ Set a port for the output operation, each pin of the ports is

connected to one LED

⚫ Write the pattern value to the port so that it drives the LEDs

to display the related pattern.

.include “m2560def.inc”
ser r16
out DDRA, r16 ; set Port A for output

ldi r16, 0xAA ; write the pattern
out PORTA, r16

end:
rjmp end

49

Example 2

⚫ Design a simple control system that can

control a set of LEDs to display a fixed

pattern for one second then turn the LEDs

off.

50

Example 2 (solution)

⚫ Consists of a number of steps:

⚫ Set a port for the output operation, each pin of the

ports is connected to one LED

⚫ Write the pattern value to the port so that it drives

the display of LEDs

⚫ Count one second

⚫ Write a pattern to set all LEDs off.

51

Counting one second

⚫ Assume we know that the clock cycle period
is 1 ms (very very slow, not a real value).
Then we can write a program that executes

single cycle instructions.

⚫ Execution of the code will take 1 second if
each instruction in the code takes one clock
cycle.

⚫ An implementation is given in the next slide

3
3 101

10
1 =−

52

.include “m2560def.inc”

.equ loop_count = 124

.def iH = r25

.def iL = r24

.def countH = r17

.def countL = r16

.macro oneSecondDelay
ldi countL, low(loop_count) ; 1 cycle
ldi countH, high(loop_count)
clr iH ; 1
clr iL

loop: cp iL, countL ; 1
cpc iH, countH
brsh done ; 1, 2 (if branch)
adiw iH:iL, 1 ; 2
nop
rjmp loop ; 2

done:
.endmacro

Code for one second delay

53

Code for Example 2

.include “m2560def.inc”
ser r15
out DDRA, r15 ; set Port A for output

ldi r15, 0xAA ; write the pattern
out PORTA, r15
oneSecondDelay ; 1 second delay
ldi r15, 0x00
out PORTA, r15 ; turn off the LEDs

end:
rjmp end

54

Example 3

⚫ Design a simple control system that can

control a set of LEDs to display a fixed

pattern specified by the user.

55

Example 3 (solution)

⚫ Consists of a number of steps:

⚫ Set the switches and connect the switches to the

pins of a port

⚫ Set the port for input

⚫ Read the input

⚫ Set another port for the output operation, each pin

of the ports is connected to one LED

⚫ Write the pattern value to the port so that it drives

the display of LEDs

56

Code for Example 3

.include “m2560def.inc”
clr r17
out DDRC, r17 ; set Port C for input
ser r17
out PORTC, r17 ; activate the pull up
in r17, PINC ; read pattern set by the user

; from the switches
ser r16
out DDRA, r16 ; set Port A for output

out PORTA, r17 ; write the input pattern
end:

rjmp end

57

Example 4

⚫ Design a simple control system that can

control a set of LEDs to display a pattern

specified by the user during the execution.

58

Example 4 (solution)

⚫ One solution is the processor continuously

checking if there is an input to read. If there

is, then read the input and go to next task,

otherwise the processor stays waiting for

input. Such an approach to handle dynamic

input is called polling.

59

Code for Example 4
⚫ Set an extra input bit for signal from user when

the input is ready.
.include “m2560def.inc”

cbi DDRB, 0 ; clear Port B bit 0 for input

waiting:sbis PINB, 0 ; if yes skip to the next instruction
rjmp waiting ; waiting

clr r17
out DDRC, r17 ; set Port C for input
ser r17
out PORTC, r17 ; activate the pull up
in r17, PINC ; read pattern set by the user

; from the switches
ser r16
out DDRA, r16 ; set Port A for output

out PORTA, r17
end: rjmp end

60

Reading Materials

⚫ Chapter 7: Computer Buses and Parallel

Input and Output. Microcontrollers and

Microcomputers by Fredrick M. Cady.

⚫ ATmega2560 Data Sheet.

⚫ AVR CPU Core

⚫ PORTS

61

Homework

1. Refer to the AVR Instruction Set manual,
study the following instructions:

• Arithmetic and logic instructions
⚫ ser

• Data transfer instructions
⚫ in, out

⚫ Bit operations
⚫ sbi, cbi

⚫ Program control instructions
⚫ sbic, sbis

⚫ MCU control instructions
⚫ nop

62

Homework

2. To make the AVR processor skip an amount

of time without doing anything, we use nop
instruction in the program shown in the

example in this lecture. Can we use

mov Rd, Rd to replace the nop instruction?

Any difference?

63

Homework
3.One of very common functions a microcontroller

application usually has is timing control. The function

below is such a timing control function. Convert it to

assembly program.

static int iSeconds, iMinutes:
void timing-control(void) {

++iSeconds;
if (iSeconds >= 60) {

iSeconds = 0;
++iMinutes;
if (iMinutes > 30) {

//do something
//and reset the timer

}
}

}

