Planning

COMP3431 Robot Software Architectures

Planning

A planner finds seqguences of actions that will cause
transitions from an initial state through intermediates
states to a goal state

Actions

e Transitions from one state to the next are achieved
by actions.

* Must specity how actions work

* Must work out correct sequence of actions to reach
goal

Action Models

e Action action(<parameters>)

« PRECOND: <conditions that must be true to
apply this actions>

« EFFECTS: <conditions that become true or false
after executing the action>

Action Example

Action Fly(p, from, to)
PRECOND: Plane(p) A At(p, from) A Airport(from) A Airport(to)
EFFECT: =At(p, from) A At(p, to0))

e positive and negative literals in effects can be separated
INnto an add list and and delete list

Example

Init: Airport(MEL) A Airport(SYD) A Plane(P1) A Plane(P2) A Cargo(C1) A Cargo(C2) A
At(C1,SYD) A At(C2, MEL) A At(P1,SYD) A At(P2, MEL)

Goal: At(C1,MEL) A At(C2,SYD)

Action Load(c, p,a)

PRECOND: At(c,a) A At(p, a) A Cargo(c) A Plane(p) A Airport(a)
Load(C1, P1, SYD)

Fly(P1, SYD, MEL)

EFFECT: = At(c, a) A In(c, p)

Action Unload(c, p, a) Unload(C1, P1, MEL)

Load(C2, P2, MEL)

PRECOND: In(c, p) A At(p, a) A Cargo(c) A Plane(p) A Airport(a)
EFFECT: At(c, a) A In(c, p)
Fly(P2, MEL, SYD)

Action Fly(p, from, to) Unload(C2, P2, SYD)

PRECOND: At(p, from) A Plane(p) A Airport(from) A Airport(to)

EFFECT: = At(p, from) A At(p, to)

Progression and Regression

e Forward Search
AllP,, B)
FyiP., A B — AP, A)
APy, A)
[ANP;, A) j:wp“,\-[qu,,A)j:
AKP,, B)

(Z
-
Al P, B) Fy(P., A B)
ANP,, B)
Al P,, B)
AP, B) P Fyi(P, A, B)
ANP,, A)

» Backward Search

Backward Regression

g'=(g—Add(a))U Precond(a)

e o’ s the regression from goal g over action a

* |.e. going backwards from g, we look for an action,
a, that has preconditions and effects that satisfy g’

Planning and TR Programs

TR Programs list
| actions from a plan,
goal — do_nothing keeping preconditions

precond — action

Action :-

e Each rule below
should be the
regression of the rule
apbove

start — action

Sussman’s Anomaly

 Goal: On(A, B) A On(B, C) C
e Try achieving On(A, B) first B A
[move(c,a,floor), move(a,floor,b),
move(a,b,floor), move(b,floor,c)]
A
o Trying On(B, C) first
B C

[move(b,floor,c), move(b,c,floor),
move(c,a,floor), move(a,floor,b)]

e Should be:

@

[move(c,a,floor), move(b,floor,c), move(a,floor,b)]

WARPLAN

Warren, D. H. D. (1974). Warplan: A system for generating plans.
Memo No. 76, Department of Computational Logic, University of Edinburgh.

* WARPLAN tries to interleave actions by protecting
goals.

e Achieve on(A,B): [move(c,a,floor), move(a,floor,b)]
* Protect on(A,B)

 Now try on(B,C) by appending actions to end of plan

e |fittries to undo a protected goal, move
backwards through plan and try to slot new plan
In.

Warplan

* [move(c,a,floor), move(a,floor,b), move(a,b,floor), ..]

 [move(c,a,floor), .., move(a,floor,b)]

|

Try inserting plan for on(B,C) here

e check that goals before and after are preserved

Partially Ordered Plans

Partial Oider Plan: Total Order Plans:
Start Start Start Start Start Start Start
/ \ Right Right Left Lsft Right Left
R Right Sock Sock Sock Sock Sock Sock
Sock Sock * * * { * *
Laft Left Right Right Right Left
Sock Sock Sock Sock Shos Shos
LeftSockOn RightSockOn . * + o 20 * * * *
Coft Right Right Left Right Left Left Right
Shoe Shoe Sh*oe STG Sh*oe Sh*oe SO*Ck Sock
Left Right Laft " Right Left Right
Shos Shos Shos Shos Shoe Shoe
Le#ShoeOn, RightShoeOn * i * ‘ * *
Finish Finish Finish Finish Finish Finish Finish

Partial-Order Planning

Init: Tire(Flat) A Tire(Spare) A At(Flat, Axle) A At(Spare, Boot)
Goal: At (Spare, Axle)

ActionRemove(obj, loc)
PRECOND: At(obj, loc)
EFFECT: - At(obj, loc) A At(obj, Ground)

ActionPutOn(t, Axle)
PRECOND: Tire(t) A At(t, Ground) A = At(Flat, Axle)
EFFECT: = At(t, Ground) A At(t, Axle)

Partial-Order Planning

Al(Spare,Axle)
Al(Spare,Boot) —
Start Finish
At(Flat Axle)
Al(Spare,Boot)
Remove(Spare,Boot)
At(Spare,G :
Al(Spare,Boot) Lsae ciound glepare Ax./e).
Start PutOn(Spare,Axle) — Finish
Al(Flat,Axle)
- Al(Flat,Axle)
Al(Spare,Boot)
Remove(Spare,Boot)
/ At(Spare,Ground) At(Spare,Axle)
- At(Spare,Boot) PutOn(Spare,Axle) — Finish
tart
At(Flat,Axle) — At(Flat Axle)
T Remove(Flat,Axle)

Al(Flat,Axle)

Forward Planning

* Forward planners are now among the best.
 Use heuristics to estimate costs

 Possible to use heuristic search, like A*, to reduce
branching factor.

Planning graphs

* Used to achieve better heuristic estimates.
» A solution can also directly extracted using GRAPHPLAN.

e Consists of a sequence of levels that correspond to time steps in the plan.
* Level O is the initial state.
* Each level consists of a set of literals and a set of actions.

* Literals = all those that could be true at that time step, depending
upon the actions executed at the preceding time step.

« Actions = all those actions that could have their preconditions
satisfied at that time step, depending on which of the literals actually
hold.

Planning graphs

e Records only a restricted subset of possible
negative interactions among actions

* They work only for propositional problems.

Example

Init: Have (Cake)
Goal: Have(Cake) A Eaten(Cake)

Action: Eat (Cake)
PRECOND: Have(Cake)
EFFECT: - Have(Cake) A Eaten(Cake)

Action: Bake (Cake)
PRECOND: = Have(Cake)
EFFECT: Have(Cake)

Cake example

S, A S, A, S

/ Bake(Cake)
Have(Cake) [Have(Cake)

Have(Cake) - - \
\ — Have(Cake) ><\ £ — Have(Cake)
Eat(Cake) Eat(Cake) <

Eaten(Cake) b Eaten(Cake)
— Eaten(Cake) =) — Eaten(Cake) = — Eaten(Cake)

« Start at level SO and determine action level AO and next level S1.
« AO >> all actions whose preconditions are satisfied in the previous level.
» Connect precond and effect of actions SO --> S1
* Inaction is represented by persistence actions.

» Level AO contains the actions that could occur

» Conflicts between actions are represented by mutex links

Cake example

S, A S, A, S,
/ Bake(Cake) \
Have(Cake) - Have(Cake) = Have(Cake)
\ — Have(Cake) ><\ £ — Have(Cake)
Eat(Cake) Eat(Cake) <
Eaten(Cake) b Eaten(Cake)
— Eaten(Cake) =) — Eaten(Cake) = — Eaten(Cake)

* Level S1 contains all literals that could result from picking any subset of actions in AO

« Conflicts between literals that can not occur together (as a consequence of the selection
action) are represented by mutex links.

« S1 defines multiple states and the mutex links are the constraints that define this set of states.

* Continue until two consecutive levels are identical: leveled off

* Or contain the same amount of literals (explanation follows later)

Cake example

8 Aq
Have(Cake) =
\ Eat(Cake)
— Eaten({Cake) =

* A mutex relation holds between two actions when:

S;

A, S,
Bake(Cake)
Have(Cake) / = \ Have(Cake)
— Have(Cake) >< £ — Have(Cake)
\ Eat(Cake) <
Eaten(Cake) b Eaten(Cake)
— Eaten(Cake) = — Eaten(Cake)

* Inconsistent effects: one action negates the effect of another.

* Interference: one of the effects of one action is the negation of a precondition of the other.

» Competing needs: one of the preconditions of one action is mutually exclusive with the precondition of the other.
» A mutex relation holds between two literals when (inconsistent support):

* |f one is the negation of the other OR

« if each possible action pair that could achieve the literals is mutex.

PG and heuristic estimation

» PG’s provide information about the problem

» A literal that does not appear in the final level of the graph cannot be achieved
by any plan.

» Useful for backward search (cost = inf).

» Level of appearance can be used as cost estimate of achieving any goal
literals = level cost.

« Small problem: several actions can occur

» Restrict to one action using serial PG (add mutex links between every pair
of actions, except persistence actions).

» Cost of a conjunction of goals? Max-level, sum-level and set-level heuristics.

PG is arelaxed problem.

The GRAPHPLAN Algorithm

How to extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure

graph <« INITIAL-PLANNING-GRAPH(problem)

goals « GOALS[problem]

loop

if goals all non-mutex in last level of graph then
solution «~ EXTRACT-SOLUTION(graph, goals, LENGTH(graph))
if solution #failure then return solution
else if NO-SOLUTION-POSSIBLE(graph) then return failure

graph « EXPAND-GRAPH(graph, problem)

Example: Spare tire problem

Init(At(Flat, Axle) AAt(Spare, Trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare, Trunk)

PRECOND: At(Spare, Trunk)

EFFECT: -At(Spare,Trunk) AAt(Spare,Ground))
Action(Remove(Flat,Axle)

PRECOND: At(Flat,Axle)

EFFECT. —At(Flat,Axle) A At(Flat,Ground))
Action(PutOn(Spare,Axle)

PRECOND: At(Spare,Groundp) A—At(Flat,Axle)

EFFECT: At(Spare,Axle) A -At(Spare,Ground))
Action(LeaveOvernight

PRECOND:
EFFECT: = At(Spare,Ground) A - At(Spare,Axle) A= At(Spare,trunk) A - At(Flat,Ground) A - At(Flat,Axle))

GRAPHPLAN example

{} At{Spare, Trunk) At(Spare Trunk)

At(Spare, Trunk) , \
' Hernove(Spare Trunk) |\
Remove(Spare, Trunk) — At(Spare, Trunk) ,'\\ \"‘ — At(Spare,Trunk)
| A Remove(FlatAxle) K / Remove Flat, Axle)
At(Flat,Axle) / A 1 At(Flat Axle)
\ l_l‘ "‘.

1
/

A At(Flat Axle)
—At(Flat Axle) —At(Flat, Axle)
\ \ [Ceaveveingnt |
—At(Spare,Axie) {3 — At{Spare Axle) C'{ \ \ — At{Spare,Axie)
\ , PutOn(Spare Axle) ! At{Spare Axle)
— At(Flat, Ground) {F —At{Flat.Ground) {1 —At{Flat, Ground)
At{Flat, Ground {3 At(Flat,G d) "4 {1 At{Flat, Ground)
\ At(Flat, Ground) // ot AN\ At(Flat, Ground)
— At(Spare, Ground) {} \ﬂAt(Spare,Ground) / % \—1At(3pare, Ground)
At(Spare, Ground) f At{Spare,Ground)

Initially the plan consist of literals from the initial state and literals from the
closed world assumption (SO0).

Add actions whose preconditions are satisfied by EXPAND-GRAPH (AO0)
Also add persistence actions and mutex relations.

Add the effects at level ST

Repeat until goal is in level Si

RAPHPLAN example

So Ao Sy A, Sa
At(Spare, Trunk) {} At{Spare, Trunk) — At(Spare, Trunk)
\ ' Remove(S p:;re Trunk) [\
Remove(é pare,Trunk) — At{Spare, Trunk) : \“E — At(Spare, Trunk)

{ l' i
\ I Remove(Flat Axle) Ls ; / Remove Flat, Axle) W
At(Flat, Axle) N \—{(n At(Flat Axle) Y
\ |_l‘ ‘\.

\ \ At(Flat,Axle)
—At(Flat. Axle) 1 ‘ — At(Flat,Axle)
\ \ eavetvermgnt]
—At(Spare,Axie) {3 — At{Spare Axle) . {3 \ \ — At{Spare,Axie)
\ , PutOn(Spare Axle) } At{Spare Axle)
— At(Flat, Ground) {3 —At(Flat,Ground) "4 {1 — At(Flat, Ground)
\ At(Flat, Ground) // ot AN\ At(Flat, Ground)
— At(Spare, Ground) {} \—1 At(Spare, Ground) / T \—1 At(Spare, Ground)
At(Spare, Ground) f At{Spare,Ground)

» EXPAND-GRAPH also looks for mutex relations

Inconsistent effects
* E.g. Remove(Spare, Trunk) and LeaveOverNight due to At(Spare,Ground) and not At(Spare, Ground)
Interference
* E.g. Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as PRECOND and not At(Flat,Axle) as EFFECT
« Competing needs
* E.g. PutOn(Spare,Axle) and Remove(Flat, Axle) due to At(Flat.Axle) and not At(Flat, Axle)

Inconsistent support
* E.g.in S2, At(Spare,Axle) and At(Flat,Axle)

GRAPHPLAN example

S, A, S, A, S,
At(Spare, Trunk) ._D At{Spare, Trunk) — At(Spare, Trunk)
\ ' Remove(S p:;re Trunk) [\
Remove(é pare,Trunk) —At(Spare, Trunk) ? - \“‘ — At{Spare, Trunk)

{ l' \
\ I Remove(Flat Axle) Ls ; / Remove Flat, Axle) W
At(Flat Axle) / g At(Flat Axle) Y At(Flat Axle)

x\ \ — At(Flat,Axle)
" L\

El‘,.,

e S A \

—At(Spare,Axie) {3 — At{Spare Axle) '"' — At{Spare,Axie)
\ , PutOn(Spare Axle) \ \ At{Spare Axle)
— At(Flat, Ground) {3 —At(Flat,Ground) "4 {1 — At(Flat, Ground)
\ At(Flat, Ground) / ot AN\ At(Flat, Ground)
— At(Spare, Ground) {} — At(Spare, Ground) / T — At(Spare, Ground)
\ At(Spare, Ground) / 1 \ At{Spare,Ground)

In S2, the goal literals exist and are not mutex with any other
« Solution might exist and EXTRACT-SOLUTION will try to find it
EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a search

Process:
* Initial state = last level of PG and goal goals of planning problem
» Actions = select any set of non-conflicting actions that cover the goals in the state
* Goal = reach level SO such that all goals are satisfied
» Cost = 1 for each action.

GRAPHPLAN example

At(Spare, Trunk) f[:} At{Spare, Trunk) —— At(Spare, Trunk)
\ ,\ C : Remove(Spare, Trunk)
Remove(Spare, Trunk) —At{Spare, Trunk) 7\“‘ =i} \“ — At(Spare,Trunk)
f l] |
/ Remove(FlatAxie) K \ Remove Flat, Axle) 341
1"‘ "/(7 7
At(Flat,Axle) L At(Flat Axle)) L \ At(Flat,Axle)

x 1 . T
— At(Flat Axle) - A AN — At(Flat. Axle)

\

LeaveOvernight

—At(Spare,Axie) {3 — At{Spare Axle) — At(Spare,Axie)
R\ , PutOn(Spare Axle) I%k At{Spare Axle)
— At(Flat, Ground) {3 —At(Flat,Ground) // q‘ \\\\ — At(Flat, Ground)
At(Flat, Ground) F At{Flat, Ground)
— At(Spare, Ground) {} — At(Spare, Ground) / 3 — At(Spare, Ground)
\ At{Spare, Ground) / o \ At{Spare,Ground)

* Termination? YES

* PG are monotonically increasing or decreasing:
* Literals increase monotonically
» Actions increase monotonically
* Mutexes decrease monotonically
Because of these properties and because there is a finite number of actions and literals, every

PG will eventually level off !

Extracting the Plan

e Heuristic forward search planners, like Lama, use
A* to find path from start to goal

* Costis based on level in graph

 Answer Set Programming is a very efficient type of
constraint solving that is fast but only works on
propositional representations

