8b. Iterative Compression

Serge Gaspers

19T3

Contents

T	Introduction	1
2	Feedback Vertex Set	2
3	Min r-Hitting Set	4
4	Further Reading	5

1 Introduction

Iterative Compression

For a minimization problem:

- Compression step: Given a solution of size k + 1, compress it to a solution of size k or prove that there is no solution of size k
- Iteration step: Incrementally build a solution to the given instance by deriving solutions for larger and larger subinstances

Example: Vertex Cover

A vertex cover in a graph G = (V, E) is a subset of its vertices $S \subseteq V$ such that every edge of G has at least one endpoint in S.

VERTEX COVER

Input: A graph G = (V, E) and an integer k

Parameter: k

Question: Does G have a vertex cover of size k?

We will design a (slow) iterative compression algorithm for VERTEX COVER to illustrate the technique.

Vertex Cover: Compression Step

Comp-VC

Input: graph G = (V, E), integer k, vertex cover C of size k + 1 of G

Output: a vertex cover C^* of size $\leq k$ of G if one exists

- Go over all partitions $(C', \overline{C'})$ of C
- $C^* = C' \cup N(\overline{C'})$
- If $\overline{C'}$ is an independent set and $|C^*| \leq k$ then return C^*

Vertex Cover: Iteration Step

Use algorithm for Comp-VC to solve Vertex Cover.

- Order vertices: $V = \{v_1, v_2, \dots, v_n\}$
- Define $G_i = G[\{v_1, v_2, \dots, v_i\}]$
- $C_0 = \emptyset$
- For i = 1..n, find a vertex cover C_i of size $\leq k$ of G_i using the algorithm for COMP-VC with input G_i and $C_{i-1} \cup \{v_i\}$. If G_i has no vertex cover of size $\leq k$, then G has no vertex cover of size $\leq k$.

Final running time: $O^*(2^k)$

2 Feedback Vertex Set

A feedback vertex set of a multigraph G = (V, E) is a set of vertices $S \subseteq V$ such that G - S is acyclic.

FEEDBACK VERTEX SET (FVS)

Input: Multigraph G = (V, E), integer k

Parameter: k

Question: Does G have a feedback vertex set of size at most k?

Note: We already saw an $O^*((3k)^k)$ time algorithm (and a $O^*(4^k)$ time randomized algorithm) for FVS. We will now aim for a $O^*(c^k)$ time deterministic algorithm, with $c \in O(1)$.

Compression Problem

Comp-FVS

Input: graph G = (V, E), integer k, feedback vertex set S of size k + 1 of G

Output: a feedback vertex set S^* of size $\leq k$ of G if one exists

Iteration step

- Order vertices: $V = \{v_1, v_2, \dots, v_n\}$
- Define $G_i = G[\{v_1, v_2, \dots, v_i\}]$
- $S_0 = \emptyset$
- For i = 1..n, find a feedback vertex set S_i of size $\leq k$ of G_i using the algorithm for Comp-FVS with input G_i and $S_{i-1} \cup \{v_i\}$. If G_i has no feedback vertex set of size $\leq k$, then G has no feedback vertex set of size $\leq k$.

Suppose Comp-FVS can be solved in $O^*(c^k)$ time. Then, using this iteration, FVS can be solved in $O^*(c^k)$ time.

Compression step

To solve Comp-FVS: for each partitions $(S', \overline{S'})$ of S, find a feedback vertex set S^* of G with $|S^*| < |S|$ and $S' \subseteq S^* \subseteq V \setminus \overline{S'}$ if one exists. Equivalently, find a feedback vertex set S'' of G - S' with $|S''| < |\overline{S'}|$ and $S'' \cap \overline{S'} = \emptyset$. We arrive at the following problem:

DISJOINT-FVS

Input: graph G=(V,E), integer k, feedback vertex set S of size k+1 of G Output: a feedback vertex set S^* of G with $|S^*| \leq k$ and $S^* \cap S = \emptyset$, if one exists

If DISJOINT-FVS can be solved in $O^*(d^k)$ time, then COMP-FVS can be solved in

$$O^*\left(\sum_{i=0}^{k+1} {k+1 \choose i} d^i\right) \subseteq O^*((d+1)^k)$$
 time

by the Binomial Theorem: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$.

Algorithm for Disjoint-FVS

Denote $A := V \setminus S$.

Simplification rules for Disjoint-FVS

Start with $S^* = \emptyset$.

(cycle-in-S)

If G[S] is not acyclic, then return No.

(budget-exceeded)

If k < 0, then return No.

(finished)

If $G - S^*$ is acyclic, then return S^* .

(creates-cycle)

If $\exists v \in A$ such that $G[S \cup \{v\}]$ is not acyclic, then add v to S^* and remove v from G.

(Degree- (≤ 1))

If $\exists v \in V$ with $d_G(v) \leq 1$, then remove v from G.

(Degree-2)

If $\exists v \in V$ with $d_G(v) = 2$ and at least one neighbor of v is in A, then add an edge between the neighbors of v (even if there was already an edge) and remove v from G.

Simplified instance:

Branching rule for Disjoint-FVS

Select a vertex $v \in A$ with at least 2 neighbors in S. Such a vertex exists if no simplification rule applies (for example, we can take a leaf in G[A]). Branch into two subproblems:

 $v \in S^*$: add v to S^* , remove v from G, and decrease k by 1

 $v \notin S^*$: add v to S

Exercise: Running time

• Prove that this algorithm has running time $O^*(4^k)$.

Result for Feedback Vertex Set

Theorem 1. FEEDBACK VERTEX SET can be solved in $O^*(5^k)$ time.

3 Min r-Hitting Set

A set system S is a pair (V, H), where V is a finite set of elements and H is a collection of subsets of V. The rank of S is the maximum size of a set in H, i.e., $\max_{V \in H} |Y|$.

A hitting set of a set system S = (V, H) is a subset X of V such that X contains at least one element of each set in H, i.e., $X \cap Y \neq \emptyset$ for each $Y \in H$.

r-HITTING SET (r-HS)

Input: A rank r set system S = (V, H), an integer k

Parameter: k

Question: Does S have a hitting set of size at most k

Note: There is an easy $O^*(r^k)$ branching algorithm.

Compression Step

Comp-r-HS

Input: set system S = (V, H), integer k, hitting set X of size k + 1 of S

Output: a hitting set X^* of size $\leq k$ of S if one exists

Go over all partitions $(X', \overline{X'})$ of X Reject a partition if there is a $Y \in H$ such that $Y \subseteq \overline{X'}$. Compute a hitting set X'' of size $\leq k - |X'|$ for (V', H'), where $V' = V \setminus X$ and $H' = \{Y \cap V' : Y \in H \land Y \cap X' = \emptyset\}$, if one exists. If one exists, then return $X^* = X' \cup X''$.

- The subinstances (V', H') where $V' = V \setminus X$ and $H' = \{Y \cap V : Y \in H \land Y \cap X' = \emptyset\}$ are instances of (r-1)-HS.
- Suppose (r-1)-HS can be solved in $O^*((\alpha_{r-1})^k)$ time. Then, Comp-r-HS can be solved in

$$O^* \left(\sum_{s=0}^k {k+1 \choose s} (\alpha_{r-1})^{k-s} \right) \subseteq O^* \left((\alpha_{r-1} + 1)^k \right)$$

time.

- Note: 2-HS is equivalent to VERTEX COVER and can be solved in $O^*(1.2738^k)$ time [CKX10].
- Note 2: 3-HS can be solved in $O^*(2.0755^k)$ time [Wah07].

Iteration Step

- (V, H) instance of r-HS with $V = \{v_1, v_2, \dots, v_n\}$
- $V_i = \{v_1, v_2, \dots, v_i\}$ for i = 1 to n
- $H_i = \{Y \in H : Y \subseteq V_i\}$
- Note that $|X_{i-1}| \leq |X_i| \leq |X_{i-1}| + 1$ where X_j is a minimum hitting set of the instance (V_i, H_i)

r-HS running time

Theorem 2. For $r \geq 3$, r-HS can be solved in $O((r-0.9245)^k)$ time.

By Monotone Local Search:

Theorem 3. For $r \geq 3$, r-HS can be solved in $O\left(\left(2 - \frac{1}{r - 0.9245}\right)^n\right)$ time.

4 Further Reading

- Chapter 4, Iterative Compression in [Cyg+15]
- Section 11.3, *Iterative Compression* in [Nie06]
- Section 6.1, Iterative Compression: The Basic Technique in [DF13]
- Section 6.2, Edge Bipartization in [DF13]

References

- [CKX10] Jianer Chen, Iyad A. Kanj, and Ge Xia. "Improved upper bounds for vertex cover". In: *Theoretical Computer Science* 411.40-42 (2010), pp. 3736–3756.
- [Cyg+15] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. *Parameterized Algorithms*. Springer, 2015.
- [DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
- [Nie06] Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.
- [Wah07] Magnus Wahlström. "Algorithms, measures and upper bounds for satisfiability and related problems". PhD thesis. Linköping University, Sweden, 2007.