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1 Introduction

Iterative Compression
For a minimization problem:

e Compression step: Given a solution of size k 4+ 1, compress it to a solution of size k or prove that there is
no solution of size k

e Iteration step: Incrementally build a solution to the given instance by deriving solutions for larger and
larger subinstances

Example: Vertex Cover
A wertex cover in a graph G = (V, E) is a subset of its vertices S C V such that every edge of G has at least one
endpoint in S.

VERTEX COVER
Input: A graph G = (V, E) and an integer k
Parameter: k&
Question: Does G have a vertex cover of size k7

We will design a (slow) iterative compression algorithm for VERTEX COVER to illustrate the technique.

Vertex Cover: Compression Step

Comp-VC
Input: graph G = (V, E), integer k, vertex cover C of size k + 1 of G
Output: a vertex cover C* of size < k of G if one exists
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C VA\C
e Go over all partitions (C’,C") of C
e C*=C'UN(C")
e If C" is an independent set and |C*| < k then return C*

Vertex Cover: Iteration Step
Use algorithm for CoMP-VC to solve VERTEX COVER.

e Order vertices: V = {v1,va,...,0,}
e Define G; = G[{v1,va,...,v;}]
L] CO = @

e For i = 1..n, find a vertex cover C; of size < k of G; using the algorithm for CoMP-VC with input G; and
Ci—1 U{v;}. If G; has no vertex cover of size < k, then G has no vertex cover of size < k.

Final running time: O*(2%)

2 Feedback Vertex Set

A feedback vertex set of a multigraph G = (V, E) is a set of vertices S C V such that G — S is acyclic.

FEEDBACK VERTEX SET (FVS)

Input: Multigraph G = (V, E), integer k
Parameter: k&
Question: Does G have a feedback vertex set of size at most k?

Note: We already saw an O*((3k)*) time algorithm (and a O*(4*) time randomized algorithm) for FVS. We will
now aim for a O*(c¥) time deterministic algorithm, with ¢ € O(1).

Compression Problem

CompP-FVS
Input: graph G = (V, E), integer k, feedback vertex set S of size k + 1 of G
Output: a feedback vertex set S* of size < k of GG if one exists




Iteration step
e Order vertices: V = {v1,va,...,0,}
e Define G; = G[{v1,va,...,v;}]
e So=10

e For i = 1..n, find a feedback vertex set S; of size < k of GG; using the algorithm for Comp-FVS with input G;
and S;_1 U {v;}. If G; has no feedback vertex set of size < k, then G has no feedback vertex set of size < k.

Suppose CoMP-FVS can be solved in O*(c*) time. Then, using this iteration, FVS can be solved in O*(c¥) time.

Compression step

To solve COMP-FVS: for each partitions (S’,5) of S, find a feedback vertex set S* of G with [S*| < |S| and
S" C 8% C V\ S if one exists. Equivalently, find a feedback vertex set S” of G — S’ with |S”| < |S’| and
S" NS’ = (). We arrive at the following problem:

DisjoINT-FVS
Input: graph G = (V, E), integer k, feedback vertex set S of size k + 1 of G
Output: a feedback vertex set S* of G with |[S*| < k and S* NS = (), if one exists

If D18JOINT-FVS can be solved in O*(d*) time, then CoMP-FVS can be solved in

k+1
kE+1\ , BN L
* 7 C * 1
0 <ZE_O( ; )d)_O((d—F )¥) time
by the Binomial Theorem: (z+y)™ =Y _, (})z" Fy*.

Algorithm for Disjoint-FVS
Denote A:=V '\ S.

N

Simplification rules for Disjoint-FVS
Start with S* = ().

(cycle-in-S)
If G[S] is not acyclic, then return No.

(budget-exceeded)
If £ < 0, then return No.

(finished)
If G — S* is acyclic, then return S*.

(creates-cycle)
If v € A such that G[S U {v}] is not acyclic, then add v to S* and remove v from G.

(Degree-(< 1))



If Jv € V with dg(v) < 1, then remove v from G.

(Degree-2)
If Jv € V with dg(v) = 2 and at least one neighbor of v is in A, then add an edge between the neighbors of v (even
if there was already an edge) and remove v from G.

Simplified instance:

Branching rule for Disjoint-FVS
Select a vertex v € A with at least 2 neighbors in S. Such a vertex exists if no simplification rule applies (for
example, we can take a leaf in G[A]). Branch into two subproblems:

v € S*: add v to S*, remove v from G, and decrease k by 1

vgS*: add v to S

Exercise: Running time

e Prove that this algorithm has running time O*(4%).

Result for Feedback Vertex Set

Theorem 1. FEEDBACK VERTEX SET can be solved in O*(5%) time.

3 Min r-Hitting Set

A set system S is a pair (V, H), where V is a finite set of elements and H is a collection of subsets of V. The rank
of § is the maximum size of a set in H, i.e., maxycpy |Y].

A hitting set of a set system § = (V, H) is a subset X of V such that X contains at least one element of each
set in H, i.e., XNY # () for each Y € H.

r-HITTING SET (r-HS)

Input: A rank r set system S = (V, H), an integer k
Parameter: k&
Question: Does S have a hitting set of size at most k

Note: There is an easy O*(r*) branching algorithm.



Compression Step

Cowmp-r-HS
Input: set system S = (V, H), integer k, hitting set X of size k+ 1 of S
Output: a hitting set X™* of size < k of S if one exists

o[
8

X V\X

Go over all partitions (X', X’) of X Reject a partition if there is a Y € H such that Y C X’. Compute a hitting
set X" of sizve < k — |X'| for (V/,H'), where V' =V \ X and H' ={Y NV’ : Y€ HAY NX' =0}, if one exists.
If one exists, then return X* = X' U X",

e The subinstances (V/,H') where V' = V\ X and H ={Y NV : Y € HAY NX' = 0} are instances of
(r—1)-HS.

e Suppose (r — 1)-HS can be solved in O*((a,_1)*) time. Then, Comp-r-HS can be solved in
o* (zkj <k N 1) (ar1>’“‘5> CO* (-1 +1)¥)
=0\ F
time.
e Note: 2-HS is equivalent to VERTEX COVER and can be solved in O*(1.2738%) time |[CKX10].
e Note 2: 3-HS can be solved in O*(2.0755%) time [Wah07].

Iteration Step
e (V,H) instance of r-HS with V = {v1,va,...,v,}
o Vi ={v,v9,...,0;} fori=1ton
e Hi={YeH:YCV}

e Note that |X,;_1| < |X;| <|X;_1] + 1 where X is a minimum hitting set of the instance (V;, H;)

r-HS running time
Theorem 2. Forr >3, r-HS can be solved in O((r — 0.9245)%) time.

By Monotone Local Search:

Theorem 3. For r > 3, r-HS can be solved in O ((2 — m) ) time.

4 Further Reading

Chapter 4, Iterative Compression in [Cyg+15]

Section 11.3, Iterative Compression in |[Nie06]

e Section 6.1, Iterative Compression: The Basic Technique in [DF13|

Section 6.2, Edge Bipartization in [DF13|
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