2b. Kernel Lower Bounds
 COMP6741: Parameterized and Exact Computation

Serge Gaspers ${ }^{12}$
${ }^{1}$ School of Computer Science and Engineering, UNSW Sydney, Asutralia
${ }^{2}$ Decision Sciences, Data61, CSIRO, Australia

Semester 2, 2018

Outline

(1) Introduction
(2) Compositions
(3) Polynomial Parameter Transformations

4 Further Reading

Outline

(1) Introduction

(2) Compositions
(3) Polynomial Parameter Transformations

44 Further Reading

Polynomial vs. exponential kernels

- For some FPT problems, only exponential kernels are known.
- Could it be that all FPT problems have polynomial kernels?
- We will see that polynomial kernels for some fixed-parameter tractable parameterized problems would contradict complexity-theoretic assumptions.

Intuition by example

```
Long Path
    Input: \(\quad\) A graph \(G=(V, E)\), and an integer \(k \leq|V|\).
    Parameter: \(k\)
    Question: Does \(G\) have a path of length at least \(k\) (as a subgraph)?
```

Long Path is NP-complete but FPT.

Intuition by example

- Assume Long Path has a k^{c} kernel, where $c=O(1)$.
- Set $q=k^{c}+1$ and consider q instances with the same parameter k :

$$
\left(G_{1}, k\right),\left(G_{2}, k\right), \ldots,\left(G_{q}, k\right)
$$

- Let $G=G_{1} \oplus G_{2} \oplus \cdots \oplus G_{q}$ be the disjoint union of all these graphs.
- Note that (G, k) is a Yes-instance if and only if at least one of $\left(G_{i}, k\right), 1 \leq i \leq q$, is a Yes-instance.
- Kernelizing (G, k) gives an instance of size k^{c}, i.e., on average less than one bit per original instance.
- "The kernelization must have solved at least one of the original NP-hard instances in polynomial time".
- Note that this is not a rigorous argument, and we will make this more formal now.

Outline

(1) Introduction
(2) Compositions
(3) Polynomial Parameter Transformations

4 Further Reading

Distillation

Definition 1

Let Π_{1}, Π_{2} be two problems. An OR-distillation (resp., AND-distillation) from Π_{1} into Π_{2} is a polynomial time algorithm D whose input is a sequence I_{1}, \ldots, I_{q} of instances for Π_{1} and whose output is an instance I^{\prime} for Π_{2} such that

- $\left|I^{\prime}\right| \leq \operatorname{poly}\left(\max _{1 \leq i \leq q}\left|I_{i}\right|\right)$, and
- I^{\prime} is a Yes-instance for Π_{2} if and only if for at least one (resp., for each) $i \in\{1, \ldots, q\}$ we have that I_{i} is a Yes-instance for Π_{1}.

NP-complete problems don't have distillations

Theorem 2 ([Fortnow, Santhanam, 2008])

If any NP-complete problem has an OR-distillation, then coNP \subseteq NP/poly. ${ }^{1}$
Note: coNP \subseteq NP/poly is not believed to be true and it would imply that the polynomial hierarchy collapses to the third level: $\mathrm{PH} \subseteq \Sigma_{3}^{p}$.

Theorem 3 ([Drucker, 2012])

If any NP-complete problem has an AND-distillation, then coNP \subseteq NP/poly.

[^0]
Composition algorithms

Definition 4

Let Π be a parameterized problem. An OR-composition (resp., AND-composition) of Π is a polynomial time algorithm A that receives as input a finite sequence I_{1}, \ldots, I_{q} of Π with parameters $k_{1}=\cdots=k_{q}=k$ and outputs an instance I^{\prime} for Π with parameter k^{\prime} such that

- $k^{\prime} \leq \operatorname{poly}(k)$, and
- I^{\prime} is a Yes-instance for Π if and only if for at least one (resp., for each) $i \in\{1, \ldots, q\}, I_{i}$ is a Yes-instance for Π.

Tool for showing kernel lower bounds

Theorem 5 (Composition Theorem)

Let Π be an NP-complete parameterized problem such that for each instance I of Π with parameter k, the value of the parameter k can be computed in polynomial time and $k \leq|I|$. If Π has an OR-composition or an AND-composition, then Π has no polynomial kernel, unless coNP \subseteq NP/poly.

Tool for showing kernel lower bounds

Theorem 5 (Composition Theorem)

Let Π be an NP-complete parameterized problem such that for each instance I of Π with parameter k, the value of the parameter k can be computed in polynomial time and $k \leq|I|$. If Π has an OR-composition or an AND-composition, then Π has no polynomial kernel, unless coNP \subseteq NP/poly.

Proof sketch.

Suppose Π has an OR/AND-composition and a polynomial kernel. Then, one can obtain an OR/AND-distillation from Π into $\operatorname{OR}(\Pi) / A N D(\Pi)$.

Tool for showing kernel lower bounds

Theorem 5 (Composition Theorem)

Let Π be an NP-complete parameterized problem such that for each instance I of Π with parameter k, the value of the parameter k can be computed in polynomial time and $k \leq|I|$. If Π has an OR-composition or an AND-composition, then Π has no polynomial kernel, unless coNP \subseteq NP/poly.

Proof sketch.

Suppose Π has an OR/AND-composition and a polynomial kernel. Then, one can obtain an OR/AND-distillation from Π into $\operatorname{OR}(\Pi) / \operatorname{AND}(\Pi)$.

$$
\begin{array}{rccrl}
I_{1} & I_{2} & \ldots & I_{q} & q \text { instances of size } \leq n=\max _{1 \leq i \leq q}\left|I_{i}\right| \\
\left\{I_{i}: k_{i}=0\right\} \ldots\left\{I_{i}: k_{i}=n\right\} & \text { group by parameter } \\
I_{0}^{\prime} & I_{1}^{\prime} & \ldots & I_{n}^{\prime} & \text { After OR-composition: } n+1 \text { instances with } k_{i}^{\prime} \leq \operatorname{poly}(n) \\
I_{0}^{\prime \prime} & I_{1}^{\prime \prime} & \ldots & I_{n}^{\prime \prime} & \text { After kernelization: } n+1 \text { instances of size } \operatorname{poly}(n) \text { each } \\
& & & & \text { This is an instance of } \operatorname{OR}(\Pi) \text { of size } \operatorname{poly}(n) .
\end{array}
$$

Long Path has no polynomial kernel I

Theorem 6

Long Path has no polynomial kernel unless NP \subseteq coNP/poly.

Proof.

Clearly, k can be computed in polynomial time and $k \leq|V|$.
We give an OR-composition for Long Path, which will prove the theorem by the previous lemma.
It receives as input a sequence of instances for Long Path: $\left(G_{1}, k\right), \ldots,\left(G_{q}, k\right)$, and it produces the instance $\left(G_{1} \oplus \cdots \oplus G_{q}, k\right)$, which is a Yes-instance if and only if at least one of $\left(G_{1}, k\right), \ldots,\left(G_{q}, k\right)$ is a Yes-instance.

var-SAT has no poly kernel I

var-SAT

Input: A propositional formula F in conjunctive normal form (CNF) Parameter: $\quad n=|\operatorname{var}(F)|$, the number of variables in F Question: Is there an assignment to $\operatorname{var}(F)$ satisfying all clauses of F ?

Example:

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee \neg x_{4}\right)
$$

or

$$
\left\{\left\{x_{1}, x_{2}\right\},\left\{\neg x_{2}, x_{3}, \neg x_{4}\right\},\left\{x_{1}, x_{4}\right\},\left\{\neg x_{1}, \neg x_{3}, \neg x_{4}\right\}\right\}
$$

var-SAT has no poly kernel II

Theorem 7

var-SAT has no polynomial kernel unless NP \subseteq coNP/poly.

Proof.

Clearly, $\operatorname{var}(F)$ can be computed in polynomial time and $n=|\operatorname{var}(F)| \leq|F|$. We give an OR-composition for var-SAT, which will prove the theorem by the previous lemma.

- Let F_{1}, \ldots, F_{q} be CNF formulas, $\left|F_{i}\right| \leq m,\left|\operatorname{var}\left(F_{i}\right)\right|=n$.
- We can decide whether one of the formulas is satisfiable in time poly $\left(m t 2^{n}\right)$. Hence, if $q>2^{n}$, the check is polynomial. If some formula is satisfiable, we output this formula, otherwise we output F_{1}.

var-SAT has no poly kernel III

Proof (continued).

- It remains the case $q \leq 2^{n}$. We assume $\operatorname{var}\left(F_{1}\right)=\cdots=\operatorname{var}\left(F_{q}\right)$, otherwise we change the names of variables.
- Let $s=\left\lceil\log _{2} q\right\rceil$. Since $q \leq 2^{n}$, we have that $s \leq n$.
- We take a set $Y=\left\{y_{1}, \ldots, y_{s}\right\}$ of new variables. Let $C_{1}, \ldots, C_{2^{s}}$ be the sequence of all 2^{s} possible clauses containing exactly s literals over the variables in Y.
- For $1 \leq i \leq q$ we let $F_{i}^{\prime}=\left\{C \cup C_{i}: C \in F_{i}\right\}$.
- We define $F=\bigcup_{i=1}^{q} F_{i}^{\prime} \cup\left\{C_{i}: q+1 \leq i \leq 2^{s}\right\}$.
- Claim: F is satisfiable if and only if F_{i} is satisfiable for some $1 \leq i \leq q$.
- Hence we have an OR-composition.

Outline

(1) Introduction

(2) Compositions

(3) Polynomial Parameter Transformations

4) Further Reading

Another tool for showing kernel lower bounds I

Definition 8

Let Π_{1}, Π_{2} be parameterized problems. A polynomial parameter transformation from Π_{1} to Π_{2} is a polynomial time algorithm, which, for any instance I_{1} of Π_{1} with parameter k_{1}, produces an equivalent instance I_{2} of Π_{2} with parameter k_{2} such that $k_{2} \leq \operatorname{poly}\left(k_{1}\right)$.

Another tool for showing kernel lower bounds II

Theorem 9

Let Π_{1}, Π_{2} be parameterized problems such that Π_{1} is NP-complete, Π_{2} is in NP, and there is a polynomial parameter transformation from Π_{1} to Π_{2}. If Π_{2} has a polynomial kernel, then Π_{1} has a polynomial kernel.

Remark: If we know that an NP-complete parameterized problem Π_{1} has no polynomial kernel (unless NP \subseteq coNP/poly), we can use the theorem to show that some other NP-complete parameterized problem Π_{2} has no polynomial kernel (unless NP \subseteq coNP/poly) by giving a polynomial parameter transformation from Π_{1} to Π_{2}.

Another tool for showing kernel lower bounds III

Proof.

- We show that under the assumptions of the theorem Π_{1} has a polynomial kernel.
- Let I_{1} be an instance of Π_{1} with parameter k_{1}.
- We obtain in polynomial time an equivalent instance I_{2} of Π_{2} with parameter $k_{2} \leq \operatorname{poly}\left(k_{1}\right)$.
- We apply Π_{2} 's kernelization and obtain I_{2}^{\prime} of size $\leq \operatorname{poly}\left(k_{1}\right)$.
- Since Π_{2} is in NP and Π_{1} is NP-complete, there exists a polynomial time reduction that maps I_{2}^{\prime} to an equivalent instance I_{1}^{\prime} of Π_{1}.
- The size of I_{1}^{\prime} is polynomial in k_{1}.

2CNF-Backdoor Evaluation I

Definition 10

A CNF formula F is a 2CNF formula if each clause of F has at most 2 literals.

Note: SAT is polynomial time solvable when the input is restricted to be a 2CNF formula.

Definition 11

A 2CNF-backdoor of a CNF formula F is a set of variables $B \subseteq \operatorname{var}(F)$ such that for each assignment $\alpha: B \rightarrow\{0,1\}$, the formula $F[\alpha]$ is a 2CNF formula. Here, $F[\alpha]$ is obtained by removing all clauses containing a literal set to 1 by α, and removing the literals set to 0 from all remaining clauses.

2CNF-Backdoor Evaluation II

2CNF-Backdoor Evaluation
Input: \quad A CNF formula F and a 2CNF-backdoor B of F
Parameter: $\quad k=|B|$
Question: Is F satisfiable?
Note: the problem is FPT by trying all assignments to B and evaluating the resulting formulas.

2CNF-Backdoor Evaluation III

```
Theorem 12
2CNF-Backdoor Evaluation has no polynomial kernel unless
NP\subseteq coNP/poly.
```


Proof.

We give a polynomial parameter transformation from var-SAT to 2CNF-Backdoor Evaluation.
Let F be an instance for var-SAT.
Then, $(F, B=\operatorname{var}(F))$ is an equivalent instance for 2CNF-BACKDOor
Evaluation with $|B| \leq|\operatorname{var}(F)|$.

Outline

(1) Introduction
(2) Compositions
(3) Polynomial Parameter Transformations

44 Further Reading

Further Reading

- Chapter 15, Lower bounds for kernelization in Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, MichałPilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- Chapter 30 (30.1-30.4), Kernelization Lower Bounds in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
- Neeldhara Misra, Venkatesh Raman, and Saket Saurabh. Lower bounds on kernelization. Discrete Optimization 8(1): 110-128 (2011).

[^0]: ${ }^{1} \mathrm{NP} /$ poly is the class of all decision problems for which there exists a polynomial-time nondeterministic Turing Machine M with the following property: for every $n \geq 0$, there is an advice string A of length poly (n) such that, for every input I of length n, the machine M correctly decides the problem with input I, given I and A.

