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Polynomial vs. exponential kernels

For some FPT problems, only exponential kernels are known.

Could it be that all FPT problems have polynomial kernels?

We will see that polynomial kernels for some fixed-parameter tractable
parameterized problems would contradict complexity-theoretic assumptions.
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Intuition by example

Long Path
Input: A graph G = (V,E), and an integer k ≤ |V |.
Parameter: k
Question: Does G have a path of length at least k (as a subgraph)?

Long Path is NP-complete but FPT.
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Intuition by example

Assume Long Path has a kc kernel, where c = O(1).

Set q = kc + 1 and consider q instances with the same parameter k:

(G1, k), (G2, k), . . . , (Gq, k).

Let G = G1 ⊕G2 ⊕ · · · ⊕Gq be the disjoint union of all these graphs.

Note that (G, k) is a Yes-instance if and only if at least one of
(Gi, k), 1 ≤ i ≤ q, is a Yes-instance.

Kernelizing (G, k) gives an instance of size kc, i.e., on average less than one
bit per original instance.

“The kernelization must have solved at least one of the original NP-hard
instances in polynomial time”.

Note that this is not a rigorous argument, and we will make this more formal
now.
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Distillation

Definition 1

Let Π1,Π2 be two problems. An OR-distillation (resp., AND-distillation) from Π1

into Π2 is a polynomial time algorithm D whose input is a sequence I1, . . . , Iq of
instances for Π1 and whose output is an instance I ′ for Π2 such that

|I ′| ≤ poly(max1≤i≤q |Ii|), and

I ′ is a Yes-instance for Π2 if and only if for at least one (resp., for each)
i ∈ {1, . . . , q} we have that Ii is a Yes-instance for Π1.
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NP-complete problems don’t have distillations

Theorem 2 ([Fortnow, Santhanam, 2008])

If any NP-complete problem has an OR-distillation, then coNP ⊆ NP/poly. 1

Note: coNP ⊆ NP/poly is not believed to be true and it would imply that the
polynomial hierarchy collapses to the third level: PH ⊆ Σp

3.

Theorem 3 ([Drucker, 2012])

If any NP-complete problem has an AND-distillation, then coNP ⊆ NP/poly.

1NP/poly is the class of all decision problems for which there exists a polynomial-time
nondeterministic Turing Machine M with the following property: for every n ≥ 0, there is an
advice string A of length poly(n) such that, for every input I of length n, the machine M
correctly decides the problem with input I, given I and A.
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Composition algorithms

Definition 4

Let Π be a parameterized problem. An OR-composition (resp., AND-composition)
of Π is a polynomial time algorithm A that receives as input a finite sequence
I1, . . . , Iq of Π with parameters k1 = · · · = kq = k and outputs an instance I ′ for
Π with parameter k′ such that

k′ ≤ poly(k), and

I ′ is a Yes-instance for Π if and only if for at least one (resp., for each)
i ∈ {1, . . . , q}, Ii is a Yes-instance for Π.
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Tool for showing kernel lower bounds

Theorem 5 (Composition Theorem)

Let Π be an NP-complete parameterized problem such that for each instance I of
Π with parameter k, the value of the parameter k can be computed in polynomial
time and k ≤ |I|. If Π has an OR-composition or an AND-composition, then Π
has no polynomial kernel, unless coNP ⊆ NP/poly.

Proof sketch.

Suppose Π has an OR/AND-composition and a polynomial kernel. Then, one can
obtain an OR/AND-distillation from Π into OR(Π)/AND(Π).

I1 I2 . . . Iq q instances of size ≤ n = max
1≤i≤q

|Ii|

{Ii : ki = 0} . . . {Ii : ki = n} group by parameter

I′0 I′1 . . . I′n After OR-composition: n + 1 instances with k′i ≤ poly(n)

I′′0 I′′1 . . . I′′n After kernelization: n + 1 instances of size poly(n) each

This is an instance of OR(Π) of size poly(n).
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Long Path has no polynomial kernel I

Theorem 6

Long Path has no polynomial kernel unless NP ⊆ coNP/poly.

Proof.

Clearly, k can be computed in polynomial time and k ≤ |V |.
We give an OR-composition for Long Path, which will prove the theorem by the
previous lemma.
It receives as input a sequence of instances for Long Path: (G1, k), . . . , (Gq, k),
and it produces the instance (G1 ⊕ · · · ⊕Gq, k), which is a Yes-instance if and
only if at least one of (G1, k), . . . , (Gq, k) is a Yes-instance.
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var-SAT has no poly kernel I

var-SAT
Input: A propositional formula F in conjunctive normal form (CNF)
Parameter: n = |var(F )|, the number of variables in F
Question: Is there an assignment to var(F ) satisfying all clauses of F?

Example:

(x1 ∨ x2) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

or

{{x1, x2}, {¬x2, x3,¬x4}, {x1, x4}, {¬x1,¬x3,¬x4}}
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var-SAT has no poly kernel II

Theorem 7

var-SAT has no polynomial kernel unless NP ⊆ coNP/poly.

Proof.

Clearly, var(F ) can be computed in polynomial time and n = |var(F )| ≤ |F |.
We give an OR-composition for var-SAT, which will prove the theorem by the
previous lemma.

Let F1, . . . , Fq be CNF formulas, |Fi| ≤ m, |var(Fi)| = n.

We can decide whether one of the formulas is satisfiable in time poly(mt2n).
Hence, if q > 2n, the check is polynomial. If some formula is satisfiable, we
output this formula, otherwise we output F1.
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var-SAT has no poly kernel III

Proof (continued).

It remains the case q ≤ 2n. We assume var(F1) = · · · = var(Fq), otherwise
we change the names of variables.

Let s = dlog2 qe. Since q ≤ 2n, we have that s ≤ n.

We take a set Y = {y1, . . . , ys} of new variables. Let C1, . . . , C2s be the
sequence of all 2s possible clauses containing exactly s literals over the
variables in Y .

For 1 ≤ i ≤ q we let F ′i = {C ∪ Ci : C ∈ Fi}.
We define F =

⋃q
i=1 F

′
i ∪ {Ci : q + 1 ≤ i ≤ 2s}.

Claim: F is satisfiable if and only if Fi is satisfiable for some 1 ≤ i ≤ q.

Hence we have an OR-composition.
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Another tool for showing kernel lower bounds I

Definition 8
Let Π1,Π2 be parameterized problems. A polynomial parameter transformation
from Π1 to Π2 is a polynomial time algorithm, which, for any instance I1 of Π1

with parameter k1, produces an equivalent instance I2 of Π2 with parameter k2
such that k2 ≤ poly(k1).
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Another tool for showing kernel lower bounds II

Theorem 9
Let Π1,Π2 be parameterized problems such that Π1 is NP-complete, Π2 is in NP,
and there is a polynomial parameter transformation from Π1 to Π2. If Π2 has a
polynomial kernel, then Π1 has a polynomial kernel.

Remark: If we know that an NP-complete parameterized problem Π1 has no
polynomial kernel (unless NP ⊆ coNP/poly), we can use the theorem to show that
some other NP-complete parameterized problem Π2 has no polynomial kernel
(unless NP ⊆ coNP/poly) by giving a polynomial parameter transformation from
Π1 to Π2.
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Another tool for showing kernel lower bounds III

Proof.
We show that under the assumptions of the theorem Π1 has a polynomial
kernel.

Let I1 be an instance of Π1 with parameter k1.

We obtain in polynomial time an equivalent instance I2 of Π2 with parameter
k2 ≤ poly(k1).

We apply Π2’s kernelization and obtain I ′2 of size ≤ poly(k1).

Since Π2 is in NP and Π1 is NP-complete, there exists a polynomial time
reduction that maps I ′2 to an equivalent instance I ′1 of Π1.

The size of I ′1 is polynomial in k1.
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2CNF-Backdoor Evaluation I

Definition 10
A CNF formula F is a 2CNF formula if each clause of F has at most 2 literals.

Note: SAT is polynomial time solvable when the input is restricted to be a 2CNF
formula.

Definition 11

A 2CNF-backdoor of a CNF formula F is a set of variables B ⊆ var(F ) such that
for each assignment α : B → {0, 1}, the formula F [α] is a 2CNF formula.
Here, F [α] is obtained by removing all clauses containing a literal set to 1 by α,
and removing the literals set to 0 from all remaining clauses.
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2CNF-Backdoor Evaluation II

2CNF-Backdoor Evaluation
Input: A CNF formula F and a 2CNF-backdoor B of F
Parameter: k = |B|
Question: Is F satisfiable?

Note: the problem is FPT by trying all assignments to B and evaluating the
resulting formulas.
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2CNF-Backdoor Evaluation III

Theorem 12
2CNF-Backdoor Evaluation has no polynomial kernel unless
NP ⊆ coNP/poly.

Proof.
We give a polynomial parameter transformation from var-SAT to
2CNF-Backdoor Evaluation.
Let F be an instance for var-SAT.
Then, (F,B = var(F )) is an equivalent instance for 2CNF-Backdoor
Evaluation with |B| ≤ |var(F )|.
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Further Reading

Chapter 15, Lower bounds for kernelization in
Marek Cygan, Fedor V. Fomin,  Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Micha lPilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

Chapter 30 (30.1–30.4), Kernelization Lower Bounds in
Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Springer, 2013.

Neeldhara Misra, Venkatesh Raman, and Saket Saurabh. Lower bounds on
kernelization. Discrete Optimization 8(1): 110-128 (2011).
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