
COMP2111 Week 4
Term 1, 2019

Predicate Logic I

1



Summary of topics

Re-introduction to Predicate Logic

Syntax of Predicate Logic

Semantics of Predicate Logic

Natural Deduction for Predicate Logic

2



Summary of topics

Re-introduction to Predicate Logic

Syntax of Predicate Logic

Semantics of Predicate Logic

Natural Deduction for Predicate Logic

3



Motivation

Predicate logic adds expressiveness to Propositional Logic.

Examine how/why a proposition is true

Define relationships between propositions

4



Motivating example
Consider the statement:

For all x , y ∈ X : (y = x+1)→ (x ≤ y)

5



Motivating example
Consider the statement:

For all x , y ∈ X : (y = x+1)→ (x ≤ y)

X = {1, 2, 3} : 18 propositional variables:

P11 = “1 = 1 + 1” S11 = “1 ≤ 1”
P12 = “2 = 1 + 1” S12 = “1 ≤ 2”

...
...

...
...

Final result: (P11 → S11) ∧ (P12 → S12) ∧ · · · ∧ (P33 → S33)

NB

“Normal arithmetic”, where P11 is false, P12 is true, etc is one of
many possibilities.

6



Motivating example
Consider the statement:

For all x , y ∈ X : (y = x+1)→ (x ≤ y)

X = N : ∞ propositional variables:

P00 = “0 = 0 + 0” S00 = “0 ≤ 0”
P01 = “1 = 0 + 1” S01 = “0 ≤ 1”

...
...

...
...

Final result: (P00 → S00) ∧ (P01 → S01) ∧ · · · Not permitted!

7



Motivating example
Consider the statement:

For all x , y ∈ X : (y = x+1)→ (x ≤ y)

X = N : ∞ propositional variables:

P00 = “0 = 0 + 0” S00 = “0 ≤ 0”
P01 = “1 = 0 + 1” S01 = “0 ≤ 1”

...
...

...
...

Final result: (P00 → S00) ∧ (P01 → S01) ∧ · · · Not permitted!

8



Motivating example
Consider the statement:

For all x , y ∈ X : (y = x+1)→ (x ≤ y)

Predicate logic introduces:

Predicates

Functions

Constants

Variables, and

Quantifiers

9



Motivating example
Consider the statement:

For all x , y ∈ X : (y = x+1)→ (x ≤ y)

Predicate logic introduces:

Predicates

Functions

Constants

Variables, and

Quantifiers

10



Motivating example
Consider the statement:

For all x , y ∈ X : (y = x+1)→ (x ≤ y)

Predicate logic introduces:

Predicates

Functions

Constants

Variables, and

Quantifiers

11



Motivating example
Consider the statement:

For all x , y ∈ X : (y = x+1)→ (x ≤ y)

Predicate logic introduces:

Predicates

Functions

Constants

Variables, and

Quantifiers

12



Motivating example
Consider the statement:

For all x , y ∈ X : (y = x+1)→ (x ≤ y)

Predicate logic introduces:

Predicates

Functions

Constants

Variables, and

Quantifiers

13



Domain of discourse

Fundamental to interpreting formulas is the domain of discourse:
the set of “ground objects” that we are referring to.

Predicates: Relations on the domain

Functions: Operators on the domain

Constants: “Named” elements of the domain

Variables: “Unnamed” elements of the domain (placeholders
for elements)

Quantifiers: Range over domain elements

Example

Consider: ∀xC(x) where C(x) represents “x studies COMP2111”
It is true if the domain of discourse is the set of students in this
room.

14



Domain of discourse

Fundamental to interpreting formulas is the domain of discourse:
the set of “ground objects” that we are referring to.

Predicates: Relations on the domain

Functions: Operators on the domain

Constants: “Named” elements of the domain

Variables: “Unnamed” elements of the domain (placeholders
for elements)

Quantifiers: Range over domain elements

Example

Consider: ∀xC(x) where C(x) represents “x studies COMP2111”
It is true if the domain of discourse is the set of students in this
room.

15



Domain of discourse

Fundamental to interpreting formulas is the domain of discourse:
the set of “ground objects” that we are referring to.

Predicates: Relations on the domain

Functions: Operators on the domain

Constants: “Named” elements of the domain

Variables: “Unnamed” elements of the domain (placeholders
for elements)

Quantifiers: Range over domain elements

Example

Consider: ∀xC(x) where C(x) represents “x studies COMP2111”
It is true if the domain of discourse is the set of students in this
room.

16



Domain of discourse

Fundamental to interpreting formulas is the domain of discourse:
the set of “ground objects” that we are referring to.

Predicates: Relations on the domain

Functions: Operators on the domain

Constants: “Named” elements of the domain

Variables: “Unnamed” elements of the domain (placeholders
for elements)

Quantifiers: Range over domain elements

Example

Consider: ∀xC(x) where C(x) represents “x studies COMP2111”
It is true if the domain of discourse is the set of students in this
room.

17



Domain of discourse

Fundamental to interpreting formulas is the domain of discourse:
the set of “ground objects” that we are referring to.

Predicates: Relations on the domain

Functions: Operators on the domain

Constants: “Named” elements of the domain

Variables: “Unnamed” elements of the domain (placeholders
for elements)

Quantifiers: Range over domain elements

Example

Consider: ∀xC(x) where C(x) represents “x studies COMP2111”
It is true if the domain of discourse is the set of students in this
room.

18



Domain of discourse

Fundamental to interpreting formulas is the domain of discourse:
the set of “ground objects” that we are referring to.

Predicates: Relations on the domain

Functions: Operators on the domain

Constants: “Named” elements of the domain

Variables: “Unnamed” elements of the domain (placeholders
for elements)

Quantifiers: Range over domain elements

Example

Consider: ∀xC(x) where C(x) represents “x studies COMP2111”
It is true if the domain of discourse is the set of students in this
room.

19



Domain of discourse

Fundamental to interpreting formulas is the domain of discourse:
the set of “ground objects” that we are referring to.

Predicates: Relations on the domain

Functions: Operators on the domain

Constants: “Named” elements of the domain

Variables: “Unnamed” elements of the domain (placeholders
for elements)

Quantifiers: Range over domain elements

Example

Consider: ∀xC(x) where C(x) represents “x studies COMP2111”
It is false if the domain of discourse is the set of students at
UNSW.

20



Multiple domains of discourse

Is it possible to have multiple domains? Yes!

For example: the predicate studies(x , y) representing “x (a
student) studies y (a subject)”.

Take Students ∪ Subjects as the domain.

Use unary predicates, e.g. isStudent(x), to restrict the domain.

To restrict quantifiers (applies to any subset of the domain
defined by a unary predicate):

∃x ∈ Students : ϕ is equivalent to: ∃x(isStudent(x) ∧ ϕ)
∀x ∈ Students : ϕ is equivalent to: ∀x(isStudent(x)→ ϕ)

21



Multiple domains of discourse

Is it possible to have multiple domains? Yes!

For example: the predicate studies(x , y) representing “x (a
student) studies y (a subject)”.

Take Students ∪ Subjects as the domain.

Use unary predicates, e.g. isStudent(x), to restrict the domain.

To restrict quantifiers (applies to any subset of the domain
defined by a unary predicate):

∃x ∈ Students : ϕ is equivalent to: ∃x(isStudent(x) ∧ ϕ)
∀x ∈ Students : ϕ is equivalent to: ∀x(isStudent(x)→ ϕ)

22



Multiple domains of discourse

Is it possible to have multiple domains? Yes!

For example: the predicate studies(x , y) representing “x (a
student) studies y (a subject)”.

Take Students ∪ Subjects as the domain.

Use unary predicates, e.g. isStudent(x), to restrict the domain.

To restrict quantifiers (applies to any subset of the domain
defined by a unary predicate):

∃x ∈ Students : ϕ is equivalent to: ∃x(isStudent(x) ∧ ϕ)
∀x ∈ Students : ϕ is equivalent to: ∀x(isStudent(x)→ ϕ)

23



Domain of discourse

Function outputs, constants, and variables are interpreted as
elements of the domain.

Predicates are truth-functional: they map elements of the domain
to true or false.

Quantifiers (and the Boolean connectives) are predicate operators:
they transform predicates into other predicates.

24



Example
Consider the following predicates and constants:

K(x , y): x knows y
S(x , y): x is not the son of y
F(x , y): the fact that x is not the son of y (functional)
J: Jon Snow

N: Ned Stark
B: Bran Stark

Domain of discourse: People ∪Facts
The following are OK:

S(B, J): Bran is not the son of Jon

K(N, J): Ned knows Jon

∀x ¬K(J, x): Jon Snow knows nothing.

This is not:

K(B,S(J,N)): Bran knows that Jon is not the son of Ned

25



Example
Consider the following predicates and constants:

K(x , y): x knows y
S(x , y): x is not the son of y
F(x , y): the fact that x is not the son of y (functional)
J: Jon Snow

N: Ned Stark
B: Bran Stark

Domain of discourse: People ∪Facts
The following are OK:

S(B, J): Bran is not the son of Jon

K(N, J): Ned knows Jon

∀x ¬K(J, x): Jon Snow knows no-one.

This is not:

K(B,S(J,N)): Bran knows that Jon is not the son of Ned

26



Example
Consider the following predicates and constants:

K(x , y): x knows y
S(x , y): x is not the son of y
F(x , y): the fact that x is not the son of y (functional)
J: Jon Snow

N: Ned Stark
B: Bran Stark

Domain of discourse: People ∪Facts
The following are OK:

S(B, J): Bran is not the son of Jon

K(N, J): Ned knows Jon

∀x ¬K(J, x): Jon Snow knows no-one.

This is not:

K(B,S(J,N)): Bran knows that Jon is not the son of Ned

27



Example
Consider the following predicates and constants:

K(x , y): x knows y
S(x , y): x is not the son of y
F(x , y): the fact that x is not the son of y (functional)
J: Jon Snow

N: Ned Stark
B: Bran Stark

Domain of discourse: People ∪Facts
The following are OK:

S(B, J): Bran is not the son of Jon

K(N, J): Ned knows Jon

∀x ¬K(J, x): Jon Snow knows no-one.

This is OK:

K(B,F(J,N)): Bran knows that Jon is not the son of Ned

28



Example
Consider the following predicates and constants:

K(x , y): x knows y
S(x , y): x is not the son of y
F(x , y): the fact that x is not the son of y (functional)
J: Jon Snow

N: Ned Stark
B: Bran Stark

Domain of discourse: People ∪Facts
The following are OK:

S(B, J): Bran is not the son of Jon

K(N, J): Ned knows Jon

∀x ¬K(J, x): Jon Snow knows nothing.

This is OK:

K(B,F(J,N)): Bran knows that Jon is not the son of Ned

29



Summary of topics

Re-introduction to Predicate Logic

Syntax of Predicate Logic

Semantics of Predicate Logic

Natural Deduction for Predicate Logic

30



Vocabulary

A vocabulary indicates what predicates, functions and constants
we can use to build up our formulas. Very similar to C header files,
or Java interfaces.

A vocabulary V is a set of:

Predicate “symbols” P, Q, . . . , each with an assoicated arity
(number of arguments)

Function “symbols” f, g, . . . , each with an assoicated arity
(number of arguments)

Constant “symbols” c, d, . . . (also known as 0-arity functions)

Example

V = {≤,+, 1} where ≤ is a binary predicate symbol, + is a binary
function symbol, and 1 is a constant symbol.

31



Vocabulary

A vocabulary indicates what predicates, functions and constants
we can use to build up our formulas. Very similar to C header files,
or Java interfaces.

A vocabulary V is a set of:

Predicate “symbols” P, Q, . . . , each with an assoicated arity
(number of arguments)

Function “symbols” f, g, . . . , each with an assoicated arity
(number of arguments)

Constant “symbols” c, d, . . . (also known as 0-arity functions)

Example

V = {≤,+, 1} where ≤ is a binary predicate symbol, + is a binary
function symbol, and 1 is a constant symbol.

32



Terms

A term is defined recursively as follows:

A variable is a term

A constant symbol is a term

If f is a function symbol with arity k , and t1, . . ., tk are
terms, then f (t1, t2, . . . , tk) is a term.

NB

Terms will be interpreted as elements of the domain of discourse.

33



Formulas
A formula of Predicate Logic is defined recursively as follows:

If P is a predicate symbol with arity k , and t1, . . ., tk are
terms, then P(t1, t2, . . . , tk) is a formula

If t1 and t2 are terms then (t1 = t2) is a formula

If ϕ,ψ are a formulas then the following are formulas:

¬ϕ
(ϕ ∧ ψ)
(ϕ ∨ ψ)
(ϕ→ ψ)
(ϕ↔ ψ)
∀xϕ
∃xϕ

NB

The base cases are known as atomic formulas: they play a similar
role in the parse tree as propositional variables.

34



Parse trees

Example

∀x

∀x∀y((y = x + 1)→ (x ≤ y))

∀y

→

= ≤

y + x y

1x

35



Free and Bound variables

A variable is bound to the closest matching quantifier that lies
above it in the parse tree. A variable that is not bound is free.

Example

In (∀x∃z∃xP(x , y , z)) ∧ Q(x):

z is bound to ∃z
y is free

First x is bound to ∃x
Second x is free

A formula with no free variables is a sentence.

36



Free and Bound variables

A variable is bound to the closest matching quantifier that lies
above it in the parse tree. A variable that is not bound is free.

Example

In (∀x∃z∃xP(x , y , z)) ∧ Q(x):

z is bound to ∃z
y is free

First x is bound to ∃x
Second x is free

A formula with no free variables is a sentence.

37



Free and Bound variables

A variable is bound to the closest matching quantifier that lies
above it in the parse tree. A variable that is not bound is free.

Example

In (∀x∃z∃xP(x , y , z)) ∧ Q(x):

z is bound to ∃z
y is free

First x is bound to ∃x
Second x is free

A formula with no free variables is a sentence.

38



Free and Bound variables

A variable is bound to the closest matching quantifier that lies
above it in the parse tree. A variable that is not bound is free.

Example

In (∀x∃z∃xP(x , y , z)) ∧ Q(x):

z is bound to ∃z
y is free

First x is bound to ∃x
Second x is free

A formula with no free variables is a sentence.

39



Free and Bound variables

A variable is bound to the closest matching quantifier that lies
above it in the parse tree. A variable that is not bound is free.

Example

In (∀x∃z∃xP(x , y , z)) ∧ Q(x):

z is bound to ∃z
y is free

First x is bound to ∃x
Second x is free

A formula with no free variables is a sentence.

40



Free and Bound variables

A variable is bound to the closest matching quantifier that lies
above it in the parse tree. A variable that is not bound is free.

Example

In (∀x∃z∃xP(x , y , z)) ∧ Q(x):

z is bound to ∃z
y is free

First x is bound to ∃x
Second x is free

A formula with no free variables is a sentence.

41



Free and Bound variables

A variable is bound to the closest matching quantifier that lies
above it in the parse tree. A variable that is not bound is free.

Example

In (∀x∃z∃xP(x , y , z)) ∧ Q(x):

z is bound to ∃z
y is free

First x is bound to ∃x
Second x is free

A formula with no free variables is a sentence.

42



Free variables formally

We can define the set of free variables recursively on the structure
of a formula:

FV (x) = {x} for all variables x

FV (c) = ∅ for all constants c

FV (f (t1, . . . , tk)) = FV (t1) ∪ · · · ∪ FV (tk) for all k-ary
functions f

FV (P(t1, . . . , tk)) = FV (t1) ∪ · · · ∪ FV (tk) for all k-ary
predicates P

FV (t1 = t2) = FV (t1) ∪ FV (t2)

FV (¬ϕ) = FV (ϕ)

FV (ψ ∧ ϕ) = FV (ψ ∨ ϕ) = FV (ψ → ϕ) = FV (ψ ↔ ϕ) =
FV (ψ) ∪ FV (ϕ)

FV (∀xϕ) = FV (∃xϕ) = FV (ϕ) \ {x}

43



Free variables formally

We can define the set of free variables recursively on the structure
of a formula:

FV (x) = {x} for all variables x

FV (c) = ∅ for all constants c

FV (f (t1, . . . , tk)) = FV (t1) ∪ · · · ∪ FV (tk) for all k-ary
functions f

FV (P(t1, . . . , tk)) = FV (t1) ∪ · · · ∪ FV (tk) for all k-ary
predicates P

FV (t1 = t2) = FV (t1) ∪ FV (t2)

FV (¬ϕ) = FV (ϕ)

FV (ψ ∧ ϕ) = FV (ψ ∨ ϕ) = FV (ψ → ϕ) = FV (ψ ↔ ϕ) =
FV (ψ) ∪ FV (ϕ)

FV (∀xϕ) = FV (∃xϕ) = FV (ϕ) \ {x}

44



Free variables formally

We can define the set of free variables recursively on the structure
of a formula:

FV (x) = {x} for all variables x

FV (c) = ∅ for all constants c

FV (f (t1, . . . , tk)) = FV (t1) ∪ · · · ∪ FV (tk) for all k-ary
functions f

FV (P(t1, . . . , tk)) = FV (t1) ∪ · · · ∪ FV (tk) for all k-ary
predicates P

FV (t1 = t2) = FV (t1) ∪ FV (t2)

FV (¬ϕ) = FV (ϕ)

FV (ψ ∧ ϕ) = FV (ψ ∨ ϕ) = FV (ψ → ϕ) = FV (ψ ↔ ϕ) =
FV (ψ) ∪ FV (ϕ)

FV (∀xϕ) = FV (∃xϕ) = FV (ϕ) \ {x}

45



Free variables formally

We can define the set of free variables recursively on the structure
of a formula:

FV (x) = {x} for all variables x

FV (c) = ∅ for all constants c

FV (f (t1, . . . , tk)) = FV (t1) ∪ · · · ∪ FV (tk) for all k-ary
functions f

FV (P(t1, . . . , tk)) = FV (t1) ∪ · · · ∪ FV (tk) for all k-ary
predicates P

FV (t1 = t2) = FV (t1) ∪ FV (t2)

FV (¬ϕ) = FV (ϕ)

FV (ψ ∧ ϕ) = FV (ψ ∨ ϕ) = FV (ψ → ϕ) = FV (ψ ↔ ϕ) =
FV (ψ) ∪ FV (ϕ)

FV (∀xϕ) = FV (∃xϕ) = FV (ϕ) \ {x}

46



Substitution

If t is a term, ϕ a formula, and x ∈ FV (ϕ), then the substitution
of t for x in ϕ (denoted ϕ[t/x ]) is the formula obtained by
replacing every free occurrence of x with t.

It can be useful to have “access” to the free variables of a formula.
So if x1, . . . , xk are the free variables of ϕ, we may denote this as
ϕ(x1, . . . , xk). Substitution can be easily presented: ϕ(t) for
ϕ(x)[t/x ].

Note

Variable names matter: ϕ(x) and ϕ(y) are different formulas!

47



Substitution

If t is a term, ϕ a formula, and x ∈ FV (ϕ), then the substitution
of t for x in ϕ (denoted ϕ[t/x ]) is the formula obtained by
replacing every free occurrence of x with t.

It can be useful to have “access” to the free variables of a formula.
So if x1, . . . , xk are the free variables of ϕ, we may denote this as
ϕ(x1, . . . , xk). Substitution can be easily presented: ϕ(t) for
ϕ(x)[t/x ].

Note

Variable names matter: ϕ(x) and ϕ(y) are different formulas!

48



Summary of topics

Re-introduction to Predicate Logic

Syntax of Predicate Logic

Semantics of Predicate Logic

Natural Deduction for Predicate Logic

49



Models

Predicate formulas are interpreted in Models.

Given a vocabulary V a model M defines:

A (non-empty) domain D = Dom(M)

For every predicate symbol P ∈ V with arity k : a k-ary
relation PM on D

For every function symbol f ∈ V with arity k: a function
f M : Dk → D

For every constant symbol c ∈ V : an element, cM of D

Example

For the vocabulary V = {≤,+, 1}: one model could be N with the
standard definitions.

50



Models

Predicate formulas are interpreted in Models.

Given a vocabulary V a model M defines:

A (non-empty) domain D = Dom(M)

For every predicate symbol P ∈ V with arity k : a k-ary
relation PM on D

For every function symbol f ∈ V with arity k: a function
f M : Dk → D

For every constant symbol c ∈ V : an element, cM of D

Example

For the vocabulary V = {≤,+, 1}: one model could be N with the
standard definitions.

51



Environments

Given a model M, an environment (or lookup table), η, is a
function from the set of variables to Dom(M).

Given an environment η, we denote by η[x 7→ c] the environment
that agrees with η everywhere except possibly at x (where it has
value c).

52



Environments

Given a model M, an environment (or lookup table), η, is a
function from the set of variables to Dom(M).

Given an environment η, we denote by η[x 7→ c] the environment
that agrees with η everywhere except possibly at x (where it has
value c).

53



Interpretations
An interpretation is a pair (M, η) where M is a model and η is
an environment.

54



Interpretations

An interpretation is a pair (M, η) where M is a model and η is
an environment.

An interpretation (M, η) maps terms to elements of Dom(M) re-
cursively as follows:

[[x ]]ηM = η(x)

[[c]]ηM = cM

[[f (t1, . . . , tk)]]ηM = f M([[t1]]ηM, . . . , [[tk ]]ηM)

55



Interpretations

An interpretation is a pair (M, η) where M is a model and η is
an environment.

An interpretation (M, η) maps formulas to B recursively as follows:

[[P(t1, . . . , tk)]]ηM = true if PM([[t1]]ηM, . . . , [[tk ]]ηM) holds.

[[t1 = t2]]ηM = true if [[t1]]ηM = [[t2]]ηM

[[∀xϕ]]ηM = true if [[ϕ]]
η[x 7→c]
M = true for all c ∈ Dom(M)

[[∃xϕ]]ηM = true if [[ϕ]]
η[x 7→c]
M = true for some c ∈ Dom(M)

[[ϕ]]ηM defined in the same way as Propositional Logic for all
other formulas ϕ.

56



Example

∀x∀y((y = x + 1)→ (x ≤ y))

〈N,≤,+, 1〉: true

〈N, >,+, 1〉: false

〈{0}, {(0, 0)},+, 0〉: true

57



Example

∀x∀y((y = x + 1)→ (x ≤ y))

〈N,≤,+, 1〉: true

〈N, >,+, 1〉: false

〈{0}, {(0, 0)},+, 0〉: true

58



Example

∀x∀y((y = x + 1)→ (x ≤ y))

〈N,≤,+, 1〉: true

〈N, >,+, 1〉: false

〈{0}, {(0, 0)},+, 0〉: true

59



Example

∀x∀y((y = x + 1)→ (x ≤ y))

〈N,≤,+, 1〉: true

〈N, >,+, 1〉: false

〈{0}, {(0, 0)},+, 0〉: true

60



Example

∀x∀y((y = x + 1)→ (x ≤ y))

〈N,≤,+, 1〉: true

〈N, >,+, 1〉: false

〈{0}, {(0, 0)},+, 0〉: true

61



Example

∀x∀y((y = x + 1)→ (x ≤ y))

〈N,≤,+, 1〉: true

〈N, >,+, 1〉: false

〈{0}, {(0, 0)},+, 0〉: true

62


