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Motivation

Predicate logic adds expressiveness to Propositional Logic.

Examine how/why a proposition is true

Define relationships between propositions
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Motivating example
Consider the statement:

For all x , y ∈ X : (y = x+1)→ (x ≤ y)
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Motivating example
Consider the statement:

For all x , y ∈ X : (y = x+1)→ (x ≤ y)

X = {1, 2, 3} : 18 propositional variables:

P11 = “1 = 1 + 1” S11 = “1 ≤ 1”
P12 = “2 = 1 + 1” S12 = “1 ≤ 2”

...
...

...
...

Final result: (P11 → S11) ∧ (P12 → S12) ∧ · · · ∧ (P33 → S33)

NB

“Normal arithmetic”, where P11 is false, P12 is true, etc is one of
many possibilities.
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Motivating example
Consider the statement:

For all x , y ∈ X : (y = x+1)→ (x ≤ y)

X = N : ∞ propositional variables:

P00 = “0 = 0 + 0” S00 = “0 ≤ 0”
P01 = “1 = 0 + 1” S01 = “0 ≤ 1”

...
...

...
...

Final result: (P00 → S00) ∧ (P01 → S01) ∧ · · · Not permitted!
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Motivating example
Consider the statement:
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Predicate logic introduces:

Predicates

Functions

Constants

Variables, and

Quantifiers
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Domain of discourse

Fundamental to interpreting formulas is the domain of discourse:
the set of “ground objects” that we are referring to.

Predicates: Relations on the domain

Functions: Operators on the domain

Constants: “Named” elements of the domain

Variables: “Unnamed” elements of the domain (placeholders
for elements)

Quantifiers: Range over domain elements

Example

Consider: ∀xC(x) where C(x) represents “x studies COMP2111”
It is true if the domain of discourse is the set of students in this
room.
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Domain of discourse

Fundamental to interpreting formulas is the domain of discourse:
the set of “ground objects” that we are referring to.

Predicates: Relations on the domain

Functions: Operators on the domain

Constants: “Named” elements of the domain

Variables: “Unnamed” elements of the domain (placeholders
for elements)

Quantifiers: Range over domain elements

Example

Consider: ∀xC(x) where C(x) represents “x studies COMP2111”
It is false if the domain of discourse is the set of students at
UNSW.
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Multiple domains of discourse

Is it possible to have multiple domains? Yes!

For example: the predicate studies(x , y) representing “x (a
student) studies y (a subject)”.

Take Students ∪ Subjects as the domain.

Use unary predicates, e.g. isStudent(x), to restrict the domain.

To restrict quantifiers (applies to any subset of the domain
defined by a unary predicate):

∃x ∈ Students : ϕ is equivalent to: ∃x(isStudent(x) ∧ ϕ)
∀x ∈ Students : ϕ is equivalent to: ∀x(isStudent(x)→ ϕ)
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Domain of discourse

Function outputs, constants, and variables are interpreted as
elements of the domain.

Predicates are truth-functional: they map elements of the domain
to true or false.

Quantifiers (and the Boolean connectives) are predicate operators:
they transform predicates into other predicates.
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Example
Consider the following predicates and constants:

K(x , y): x knows y
S(x , y): x is not the son of y
F(x , y): the fact that x is not the son of y (functional)
J: Jon Snow

N: Ned Stark
B: Bran Stark

Domain of discourse: People ∪Facts
The following are OK:

S(B, J): Bran is not the son of Jon

K(N, J): Ned knows Jon

∀x ¬K(J, x): Jon Snow knows nothing.

This is not:

K(B,S(J,N)): Bran knows that Jon is not the son of Ned
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Vocabulary

A vocabulary indicates what predicates, functions and constants
we can use to build up our formulas. Very similar to C header files,
or Java interfaces.

A vocabulary V is a set of:

Predicate “symbols” P, Q, . . . , each with an assoicated arity
(number of arguments)

Function “symbols” f, g, . . . , each with an assoicated arity
(number of arguments)

Constant “symbols” c, d, . . . (also known as 0-arity functions)

Example

V = {≤,+, 1} where ≤ is a binary predicate symbol, + is a binary
function symbol, and 1 is a constant symbol.
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Terms

A term is defined recursively as follows:

A variable is a term

A constant symbol is a term

If f is a function symbol with arity k , and t1, . . ., tk are
terms, then f (t1, t2, . . . , tk) is a term.

NB

Terms will be interpreted as elements of the domain of discourse.
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Formulas
A formula of Predicate Logic is defined recursively as follows:

If P is a predicate symbol with arity k , and t1, . . ., tk are
terms, then P(t1, t2, . . . , tk) is a formula

If t1 and t2 are terms then (t1 = t2) is a formula

If ϕ,ψ are a formulas then the following are formulas:

¬ϕ
(ϕ ∧ ψ)
(ϕ ∨ ψ)
(ϕ→ ψ)
(ϕ↔ ψ)
∀xϕ
∃xϕ

NB

The base cases are known as atomic formulas: they play a similar
role in the parse tree as propositional variables.
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Parse trees

Example

∀x

∀x∀y((y = x + 1)→ (x ≤ y))

∀y

→

= ≤

y + x y

1x
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Free and Bound variables

A variable is bound to the closest matching quantifier that lies
above it in the parse tree. A variable that is not bound is free.

Example

In (∀x∃z∃xP(x , y , z)) ∧ Q(x):

z is bound to ∃z
y is free

First x is bound to ∃x
Second x is free

A formula with no free variables is a sentence.
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Free variables formally

We can define the set of free variables recursively on the structure
of a formula:

FV (x) = {x} for all variables x

FV (c) = ∅ for all constants c

FV (f (t1, . . . , tk)) = FV (t1) ∪ · · · ∪ FV (tk) for all k-ary
functions f

FV (P(t1, . . . , tk)) = FV (t1) ∪ · · · ∪ FV (tk) for all k-ary
predicates P

FV (t1 = t2) = FV (t1) ∪ FV (t2)

FV (¬ϕ) = FV (ϕ)

FV (ψ ∧ ϕ) = FV (ψ ∨ ϕ) = FV (ψ → ϕ) = FV (ψ ↔ ϕ) =
FV (ψ) ∪ FV (ϕ)

FV (∀xϕ) = FV (∃xϕ) = FV (ϕ) \ {x}
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Substitution

If t is a term, ϕ a formula, and x ∈ FV (ϕ), then the substitution
of t for x in ϕ (denoted ϕ[t/x ]) is the formula obtained by
replacing every free occurrence of x with t.

It can be useful to have “access” to the free variables of a formula.
So if x1, . . . , xk are the free variables of ϕ, we may denote this as
ϕ(x1, . . . , xk). Substitution can be easily presented: ϕ(t) for
ϕ(x)[t/x ].

Note

Variable names matter: ϕ(x) and ϕ(y) are different formulas!
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Models

Predicate formulas are interpreted in Models.

Given a vocabulary V a model M defines:

A (non-empty) domain D = Dom(M)

For every predicate symbol P ∈ V with arity k : a k-ary
relation PM on D

For every function symbol f ∈ V with arity k: a function
f M : Dk → D

For every constant symbol c ∈ V : an element, cM of D

Example

For the vocabulary V = {≤,+, 1}: one model could be N with the
standard definitions.
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Environments

Given a model M, an environment (or lookup table), η, is a
function from the set of variables to Dom(M).

Given an environment η, we denote by η[x 7→ c] the environment
that agrees with η everywhere except possibly at x (where it has
value c).
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Interpretations
An interpretation is a pair (M, η) where M is a model and η is
an environment.
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Interpretations

An interpretation is a pair (M, η) where M is a model and η is
an environment.

An interpretation (M, η) maps terms to elements of Dom(M) re-
cursively as follows:

[[x ]]ηM = η(x)

[[c]]ηM = cM

[[f (t1, . . . , tk)]]ηM = f M([[t1]]ηM, . . . , [[tk ]]ηM)
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Interpretations

An interpretation is a pair (M, η) where M is a model and η is
an environment.

An interpretation (M, η) maps formulas to B recursively as follows:

[[P(t1, . . . , tk)]]ηM = true if PM([[t1]]ηM, . . . , [[tk ]]ηM) holds.

[[t1 = t2]]ηM = true if [[t1]]ηM = [[t2]]ηM

[[∀xϕ]]ηM = true if [[ϕ]]
η[x 7→c]
M = true for all c ∈ Dom(M)

[[∃xϕ]]ηM = true if [[ϕ]]
η[x 7→c]
M = true for some c ∈ Dom(M)

[[ϕ]]ηM defined in the same way as Propositional Logic for all
other formulas ϕ.
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Example

∀x∀y((y = x + 1)→ (x ≤ y))

〈N,≤,+, 1〉: true

〈N, >,+, 1〉: false

〈{0}, {(0, 0)},+, 0〉: true
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