COMP2111 Week 4 Term 1, 2019 Predicate Logic I

Summary of topics

- Re-introduction to Predicate Logic
- Syntax of Predicate Logic
- Semantics of Predicate Logic
- Natural Deduction for Predicate Logic

Summary of topics

- Re-introduction to Predicate Logic
- Syntax of Predicate Logic
- Semantics of Predicate Logic
- Natural Deduction for Predicate Logic

Motivation

Predicate logic adds expressiveness to Propositional Logic.

- Examine how/why a proposition is true
- Define relationships between propositions

Consider the statement:

For all
$$x, y \in X : (y = x+1) \rightarrow (x \le y)$$

Consider the statement:

For all
$$x, y \in X : (y = x+1) \rightarrow (x \le y)$$

 $X = \{1, 2, 3\}$: 18 propositional variables:

$$P_{11} = "1 = 1 + 1" \quad S_{11} = "1 \le 1"$$
 $P_{12} = "2 = 1 + 1" \quad S_{12} = "1 \le 2"$
 $\vdots \quad \vdots \quad \vdots \quad \vdots$

Final result: $(P_{11} \rightarrow S_{11}) \land (P_{12} \rightarrow S_{12}) \land \cdots \land (P_{33} \rightarrow S_{33})$

NB

"Normal arithmetic", where P_{11} is false, P_{12} is true, etc is one of many possibilities.

Consider the statement:

For all
$$x, y \in X : (y = x+1) \rightarrow (x \le y)$$

 $X = \mathbb{N} : \infty$ propositional variables:

$$P_{00} = "0 = 0 + 0"$$
 $S_{00} = "0 \le 0"$
 $P_{01} = "1 = 0 + 1"$ $S_{01} = "0 \le 1"$
 \vdots \vdots

Final result: $(P_{00} \rightarrow S_{00}) \land (P_{01} \rightarrow S_{01}) \land \cdots$ Not permitted!

Consider the statement:

For all
$$x, y \in X : (y = x+1) \rightarrow (x \le y)$$

 $X = \mathbb{N} : \infty$ propositional variables:

$$P_{00} = "0 = 0 + 0"$$
 $S_{00} = "0 \le 0"$
 $P_{01} = "1 = 0 + 1"$ $S_{01} = "0 \le 1"$
 \vdots \vdots

Final result: $(P_{00} \rightarrow S_{00}) \land (P_{01} \rightarrow S_{01}) \land \cdots$ Not permitted!

Consider the statement:

For all
$$x, y \in X : (y = x+1) \rightarrow (x \leq y)$$

- Predicates
- Functions
- Constants
- Variables, and
- Quantifiers

Consider the statement:

For all
$$x, y \in X : (y = x+1) \rightarrow (x \leq y)$$

- Predicates
- Functions
- Constants
- Variables, and
- Quantifiers

Consider the statement:

For all
$$x, y \in X : (y = x+1) \rightarrow (x \leq y)$$

- Predicates
- Functions
- Constants
- Variables, and
- Quantifiers

Consider the statement:

For all
$$x, y \in X : (y = x+1) \rightarrow (x \leq y)$$

- Predicates
- Functions
- Constants
- Variables, and
- Quantifiers

Consider the statement:

For all
$$x, y \in X : (y = x+1) \rightarrow (x \leq y)$$

- Predicates
- Functions
- Constants
- Variables, and
- Quantifiers

Fundamental to interpreting formulas is the **domain of discourse**: the set of "ground objects" that we are referring to.

- Predicates: Relations on the domain
- Functions: Operators on the domain
- Constants: "Named" elements of the domain
- Variables: "Unnamed" elements of the domain (placeholders for elements)
- Quantifiers: Range over domain elements

Example

Fundamental to interpreting formulas is the **domain of discourse**: the set of "ground objects" that we are referring to.

- Predicates: Relations on the domain
- Functions: Operators on the domain
- Constants: "Named" elements of the domain
- Variables: "Unnamed" elements of the domain (placeholders for elements)
- Quantifiers: Range over domain elements

Example

Fundamental to interpreting formulas is the **domain of discourse**: the set of "ground objects" that we are referring to.

- Predicates: Relations on the domain
- Functions: Operators on the domain
- Constants: "Named" elements of the domain
- Variables: "Unnamed" elements of the domain (placeholders for elements)
- Quantifiers: Range over domain elements

Example

Fundamental to interpreting formulas is the **domain of discourse**: the set of "ground objects" that we are referring to.

- Predicates: Relations on the domain
- Functions: Operators on the domain
- Constants: "Named" elements of the domain
- Variables: "Unnamed" elements of the domain (placeholders for elements)
- Quantifiers: Range over domain elements

Example

Fundamental to interpreting formulas is the **domain of discourse**: the set of "ground objects" that we are referring to.

- Predicates: Relations on the domain
- Functions: Operators on the domain
- Constants: "Named" elements of the domain
- Variables: "Unnamed" elements of the domain (placeholders for elements)
- Quantifiers: Range over domain elements

Example

Fundamental to interpreting formulas is the **domain of discourse**: the set of "ground objects" that we are referring to.

- Predicates: Relations on the domain
- Functions: Operators on the domain
- Constants: "Named" elements of the domain
- Variables: "Unnamed" elements of the domain (placeholders for elements)
- Quantifiers: Range over domain elements

Example

Fundamental to interpreting formulas is the **domain of discourse**: the set of "ground objects" that we are referring to.

- Predicates: Relations on the domain
- Functions: Operators on the domain
- Constants: "Named" elements of the domain
- Variables: "Unnamed" elements of the domain (placeholders for elements)
- Quantifiers: Range over domain elements

Example

Consider: $\forall x \mathbf{C}(x)$ where $\mathbf{C}(x)$ represents "x studies COMP2111" It is false if the domain of discourse is the set of students at UNSW.

Multiple domains of discourse

Is it possible to have multiple domains? Yes!

For example: the predicate studies(x, y) representing "x (a student) studies y (a subject)".

- Take STUDENTS ∪ SUBJECTS as the domain.
- Use unary predicates, e.g. isStudent(x), to restrict the domain
- To restrict quantifiers (applies to any subset of the domain defined by a unary predicate):

Multiple domains of discourse

Is it possible to have multiple domains? Yes!

For example: the predicate studies(x, y) representing "x (a student) studies y (a subject)".

- Take STUDENTS ∪ SUBJECTS as the domain.
- Use unary predicates, e.g. isStudent(x), to restrict the domain.
- To restrict quantifiers (applies to any subset of the domain defined by a unary predicate):

Multiple domains of discourse

Is it possible to have multiple domains? Yes!

For example: the predicate studies(x, y) representing "x (a student) studies y (a subject)".

- Take STUDENTS ∪ SUBJECTS as the domain.
- Use unary predicates, e.g. isStudent(x), to restrict the domain.
- To restrict quantifiers (applies to any subset of the domain defined by a unary predicate):
 - $\exists x \in \text{STUDENTS} : \varphi \text{ is equivalent to: } \exists x (\text{isStudent}(x) \land \varphi)$
 - $\forall x \in \text{Student}(x) \to \varphi$ is equivalent to: $\forall x (\text{isStudent}(x) \to \varphi)$

Function outputs, constants, and variables are interpreted as elements of the domain.

Predicates are truth-functional: they map elements of the domain to true or false.

Quantifiers (and the Boolean connectives) are predicate operators: they transform predicates into other predicates.

Consider the following predicates and constants:

```
K(x, y): x knows y
S(x,y): x is not the son of y
J: Jon Snow
N: Ned Stark
        Bran Stark
B:
```

Domain of discourse: PEOPLE UFACTS

The following are OK:

- S(B, J): Bran is not the son of Jon
- K(N, J): Ned knows Jon
- $\forall x \neg K(J, x)$: Jon Snow knows nothing.

● K(B, S(J, N)): Bran knows that Jon is not the son of Ned

Consider the following predicates and constants:

```
K(x, y): x knows y
S(x,y): x is not the son of y
J: Jon Snow
       Ned Stark
N:
        Bran Stark
B:
```

Domain of discourse: PEOPLE UFACTS The following are OK:

- S(B, J): Bran is not the son of Jon
- K(N, J): Ned knows Jon
- $\forall x \neg K(J, x)$: Jon Snow knows no-one.

• K(B,S(J,N)): Bran knows that Jon is not the son of Ned

Consider the following predicates and constants:

```
K(x, y): x knows y
```

S(x,y): x is not the son of y

J: Jon Snow N: Ned Stark

Bran Stark B:

Domain of discourse: PEOPLE UFACTS The following are OK:

- - S(B, J): Bran is not the son of Jon
 - K(N, J): Ned knows Jon
 - $\forall x \neg K(J, x)$: Jon Snow knows no-one.

This is not:

• K(B, S(J, N)): Bran knows that Jon is not the son of Ned

Consider the following predicates and constants:

```
K(x, y): x knows y
S(x, y): x is not the son of y
F(x, y): the fact that x is not the son of y (functional)
J: Jon Snow
N: Ned Stark
         Bran Stark
B:
```

Domain of discourse: PEOPLE UFACTS

The following are OK:

- S(B, J): Bran is not the son of Jon
- K(N, J): Ned knows Jon
- $\forall x \neg K(J, x)$: Jon Snow knows no-one.

This is OK:

• K(B, F(J, N)): Bran knows that Jon is not the son of Ned

Consider the following predicates and constants:

```
K(x, y): x knows y
S(x, y): x is not the son of y
F(x, y): the fact that x is not the son of y (functional)
J: Jon Snow
N: Ned Stark
         Bran Stark
B:
```

Domain of discourse: PEOPLE UFACTS

The following are OK:

- S(B, J): Bran is not the son of Jon
- K(N, J): Ned knows Jon
- $\forall x \neg K(J, x)$: Jon Snow knows nothing.

This is OK:

• K(B, F(J, N)): Bran knows that Jon is not the son of Ned

Summary of topics

- Re-introduction to Predicate Logic
- Syntax of Predicate Logic
- Semantics of Predicate Logic
- Natural Deduction for Predicate Logic

Vocabulary

A **vocabulary** indicates what <u>predicates</u>, <u>functions</u> and <u>constants</u> we can use to build up our formulas. Very similar to C header files, or Java interfaces.

A vocabulary V is a set of:

- Predicate "symbols" P, Q, ..., each with an assoicated arity (number of arguments)
- Function "symbols" f, g, ..., each with an assoicated arity (number of arguments)
- Constant "symbols" c, d, ... (also known as 0-arity functions)

Example

 $V=\{\leq,+,1\}$ where \leq is a binary predicate symbol, + is a binary function symbol, and 1 is a constant symbol.

Vocabulary

A **vocabulary** indicates what predicates, functions and constants we can use to build up our formulas. Very similar to C header files, or Java interfaces.

A vocabulary V is a set of:

- Predicate "symbols" P, Q, ..., each with an assoicated arity (number of arguments)
- Function "symbols" f, g, ..., each with an assoicated arity (number of arguments)
- Constant "symbols" c, d, ... (also known as 0-arity functions)

Example

 $V = \{ \leq, +, 1 \}$ where \leq is a binary predicate symbol, + is a binary function symbol, and 1 is a constant symbol.

Terms

A **term** is defined recursively as follows:

- A variable is a term
- A constant symbol is a term
- If f is a function symbol with arity k, and t_1, \ldots, t_k are terms, then $f(t_1, t_2, \ldots, t_k)$ is a term.

NB

Terms will be interpreted as elements of the domain of discourse.

Formulas

A formula of Predicate Logic is defined recursively as follows:

- If P is a predicate symbol with arity k, and t_1, \ldots, t_k are terms, then $P(t_1, t_2, \ldots, t_k)$ is a formula
- If t_1 and t_2 are terms then $(t_1 = t_2)$ is a formula
- ullet If $arphi, \psi$ are a formulas then the following are formulas:
 - ¬φ
 - $(\varphi \wedge \psi)$
 - $(\varphi \lor \psi)$
 - $(\varphi \rightarrow \psi)$
 - $(\varphi \leftrightarrow \psi)$
 - $\forall x \varphi$
 - ∃xφ

NB

The base cases are known as **atomic** formulas: they play a similar role in the parse tree as propositional variables.

Parse trees

Free and Bound variables

A variable is **bound** to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is **free**.

```
Example In (\forall x \exists z \exists x P(x, y, z)) \land Q(x):
```

A formula with no free variables is a **sentence**.

A variable is **bound** to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is **free**.

```
Example
In (\forall x \exists z \exists x P(x, y, z)) \land Q(x):

• z is bound to \exists z

• y is free

• First x is bound to \exists x

• Second x is free
```


A variable is **bound** to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is **free**.

```
Example
In (\forall x \exists z \exists x P(x, y, z)) \land Q(x):

• z is bound to \exists z

• y is free

• First x is bound to \exists x

• Second x is free
```


A variable is **bound** to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is **free**.

Example

In $(\forall x \exists z \exists x P(x, y, z)) \land Q(x)$:

- z is bound to $\exists z$
- y is free
- First x is bound to $\exists x$
- Second x is free

A variable is **bound** to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is **free**.

Example

In $(\forall x \exists z \exists x P(x, y, z)) \land Q(x)$:

- z is bound to $\exists z$
- y is free
- First x is bound to $\exists x$
- Second x is free

A variable is **bound** to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is **free**.

Example

In $(\forall x \exists z \exists x P(x, y, z)) \land Q(x)$:

- z is bound to $\exists z$
- y is free
- First x is bound to $\exists x$
- Second x is free

A variable is **bound** to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is **free**.

Example

In $(\forall x \exists z \exists x P(x, y, z)) \land Q(x)$:

- z is bound to $\exists z$
- y is free
- First x is bound to $\exists x$
- Second x is free

- $FV(x) = \{x\}$ for all variables x
- $FV(c) = \emptyset$ for all constants c
- $FV(f(t_1, ..., t_k)) = FV(t_1) \cup \cdots \cup FV(t_k)$ for all k-ary functions f
- $FV(P(t_1,...,t_k)) = FV(t_1) \cup \cdots \cup FV(t_k)$ for all k-ary predicates P
- $FV(t_1 = t_2) = FV(t_1) \cup FV(t_2)$
- $FV(\neg \varphi) = FV(\varphi)$
- $FV(\psi \land \varphi) = FV(\psi \lor \varphi) = FV(\psi \to \varphi) = FV(\psi \leftrightarrow \varphi) = FV(\psi) \cup FV(\varphi)$
- $FV(\forall x\varphi) = FV(\exists x\varphi) = FV(\varphi) \setminus \{x\}$

- $FV(x) = \{x\}$ for all variables x
- $FV(c) = \emptyset$ for all constants c
- $FV(f(t_1, ..., t_k)) = FV(t_1) \cup \cdots \cup FV(t_k)$ for all k-ary functions f
- $FV(P(t_1, ..., t_k)) = FV(t_1) \cup \cdots \cup FV(t_k)$ for all k-ary predicates P
- $FV(t_1 = t_2) = FV(t_1) \cup FV(t_2)$
- $FV(\neg \varphi) = FV(\varphi)$
- $FV(\psi \land \varphi) = FV(\psi \lor \varphi) = FV(\psi \to \varphi) = FV(\psi \leftrightarrow \varphi) = FV(\psi) \cup FV(\varphi)$
- $FV(\forall x\varphi) = FV(\exists x\varphi) = FV(\varphi) \setminus \{x\}$

- $FV(x) = \{x\}$ for all variables x
- $FV(c) = \emptyset$ for all constants c
- $FV(f(t_1, ..., t_k)) = FV(t_1) \cup \cdots \cup FV(t_k)$ for all k-ary functions f
- $FV(P(t_1, ..., t_k)) = FV(t_1) \cup \cdots \cup FV(t_k)$ for all k-ary predicates P
- $FV(t_1 = t_2) = FV(t_1) \cup FV(t_2)$
- $FV(\neg \varphi) = FV(\varphi)$
- $FV(\psi \land \varphi) = FV(\psi \lor \varphi) = FV(\psi \to \varphi) = FV(\psi \leftrightarrow \varphi) = FV(\psi) \cup FV(\varphi)$
- $FV(\forall x\varphi) = FV(\exists x\varphi) = FV(\varphi) \setminus \{x\}$

- $FV(x) = \{x\}$ for all variables x
- $FV(c) = \emptyset$ for all constants c
- $FV(f(t_1, ..., t_k)) = FV(t_1) \cup \cdots \cup FV(t_k)$ for all k-ary functions f
- $FV(P(t_1, ..., t_k)) = FV(t_1) \cup \cdots \cup FV(t_k)$ for all k-ary predicates P
- $FV(t_1 = t_2) = FV(t_1) \cup FV(t_2)$
- $FV(\neg \varphi) = FV(\varphi)$
- $FV(\psi \land \varphi) = FV(\psi \lor \varphi) = FV(\psi \to \varphi) = FV(\psi \leftrightarrow \varphi) = FV(\psi) \cup FV(\varphi)$
- $FV(\forall x\varphi) = FV(\exists x\varphi) = FV(\varphi) \setminus \{x\}$

Substitution

If t is a term, φ a formula, and $x \in FV(\varphi)$, then the **substitution** of t for x in φ (denoted $\varphi[t/x]$) is the formula obtained by replacing every free occurrence of x with t.

It can be useful to have "access" to the free variables of a formula So if x_1, \ldots, x_k are the free variables of φ , we may denote this as $\varphi(x_1, \ldots, x_k)$. Substitution can be easily presented: $\varphi(t)$ for $\varphi(x)[t/x]$.

Note

Variable names matter: arphi(x) and arphi(y) are different formulas

Substitution

If t is a term, φ a formula, and $x \in FV(\varphi)$, then the **substitution** of t for x in φ (denoted $\varphi[t/x]$) is the formula obtained by replacing every free occurrence of x with t.

It can be useful to have "access" to the free variables of a formula. So if x_1, \ldots, x_k are the free variables of φ , we may denote this as $\varphi(x_1, \ldots, x_k)$. Substitution can be easily presented: $\varphi(t)$ for $\varphi(x)[t/x]$.

Note

Variable names matter: $\varphi(x)$ and $\varphi(y)$ are different formulas!

Summary of topics

- Re-introduction to Predicate Logic
- Syntax of Predicate Logic
- Semantics of Predicate Logic
- Natural Deduction for Predicate Logic

Models

Predicate formulas are interpreted in Models.

Given a vocabulary V a model $\mathcal M$ defines:

- A (non-empty) domain $D = Dom(\mathcal{M})$
- For every predicate symbol $P \in V$ with arity k: a k-ary relation $P^{\mathcal{M}}$ on D
- For every function symbol $f \in V$ with arity k: a function $f^{\mathcal{M}}: D^k \to D$
- For every constant symbol $c \in V$: an element, $c^{\mathcal{M}}$ of D

Example

For the vocabulary $V = \{ \leq, +, 1 \}$: one model could be $\mathbb N$ with the standard definitions.

Models

Predicate formulas are interpreted in **Models**.

Given a vocabulary V a model $\mathcal M$ defines:

- A (non-empty) domain $D = \mathsf{Dom}(\mathcal{M})$
- For every predicate symbol $P \in V$ with arity k: a k-ary relation $P^{\mathcal{M}}$ on D
- For every function symbol $f \in V$ with arity k: a function $f^{\mathcal{M}}: D^k \to D$
- ullet For every constant symbol $c \in V$: an element, $c^{\mathcal{M}}$ of D

Example

For the vocabulary $V = \{ \leq, +, 1 \}$: one model could be $\mathbb N$ with the standard definitions.

Environments

Given a model \mathcal{M} , an **environment** (or **lookup table**), η , is a function from the set of variables to $Dom(\mathcal{M})$.

Given an environment η , we denote by $\eta[x \mapsto c]$ the environment that agrees with η everywhere except possibly at x (where it has value c).

Environments

Given a model \mathcal{M} , an **environment** (or **lookup table**), η , is a function from the set of variables to $\mathsf{Dom}(\mathcal{M})$.

Given an environment η , we denote by $\eta[x \mapsto c]$ the environment that agrees with η everywhere except possibly at x (where it has value c).

Interpretations

An **interpretation** is a pair (\mathcal{M}, η) where \mathcal{M} is a model and η is an environment.

Interpretations

An **interpretation** is a pair (\mathcal{M}, η) where \mathcal{M} is a model and η is an environment.

An interpretation (\mathcal{M}, η) maps terms to elements of $\mathsf{Dom}(\mathcal{M})$ recursively as follows:

- $\bullet \ \llbracket x \rrbracket_{\mathcal{M}}^{\eta} = \eta(x)$
- $\bullet \ \llbracket c \rrbracket_{\mathcal{M}}^{\eta} = c^{\mathcal{M}}$
- $\llbracket f(t_1,\ldots,t_k) \rrbracket_{\mathcal{M}}^{\eta} = f^{\mathcal{M}}(\llbracket t_1 \rrbracket_{\mathcal{M}}^{\eta},\ldots,\llbracket t_k \rrbracket_{\mathcal{M}}^{\eta})$

Interpretations

An **interpretation** is a pair (\mathcal{M}, η) where \mathcal{M} is a model and η is an environment.

An interpretation (\mathcal{M}, η) maps formulas to \mathbb{B} recursively as follows:

- $\llbracket P(t_1,\ldots,t_k) \rrbracket_{\mathcal{M}}^{\eta} = \text{true if } P^{\mathcal{M}}(\llbracket t_1 \rrbracket_{\mathcal{M}}^{\eta},\ldots,\llbracket t_k \rrbracket_{\mathcal{M}}^{\eta}) \text{ holds.}$
- ullet $\llbracket t_1 = t_2
 rbracket^\eta_{\mathcal{M}} = ext{true if } \llbracket t_1
 rbracket^\eta_{\mathcal{M}} = \llbracket t_2
 rbracket^\eta_{\mathcal{M}}$
- $\bullet \ \llbracket \forall x \varphi \rrbracket_{\mathcal{M}}^{\eta} = \mathtt{true} \ \mathsf{if} \ \llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta[\mathsf{x} \mapsto c]} = \mathtt{true} \ \mathsf{for} \ \mathsf{all} \ c \in \mathsf{Dom}(\mathcal{M})$
- $\bullet \ \ \llbracket \exists x \varphi \rrbracket_{\mathcal{M}}^{\eta} = \mathsf{true} \ \mathsf{if} \ \llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta[x \mapsto c]} = \mathsf{true} \ \mathsf{for} \ \mathsf{some} \ c \in \mathsf{Dom}(\mathcal{M})$
- $[\![\varphi]\!]_{\mathcal{M}}^{\eta}$ defined in the same way as Propositional Logic for all other formulas φ .

$$\forall x \forall y ((y = x + 1) \rightarrow (x \le y))$$

- $\langle \mathbb{N}, \leq, +, 1 \rangle$: true
- \bullet $\langle \mathbb{N}, >, +, 1 \rangle$: false
- $\{\{0\},\{(0,0)\},+,0\}$: thrue

$$\forall x \forall y ((y = x + 1) \rightarrow (x \le y))$$

- $\langle \mathbb{N}, \leq, +, 1 \rangle$: true
- ullet $\langle \mathbb{N}, >, +, 1 \rangle$: false
- $\{\{0\},\{(0,0)\},+,0\}$: true

$$\forall x \forall y ((y = x + 1) \rightarrow (x \le y))$$

- $\langle \mathbb{N}, \leq, +, 1 \rangle$: true
- $\langle \mathbb{N}, >, +, 1 \rangle$: false
- $\{\{0\},\{(0,0)\},+,0\}$: thrue

$$\forall x \forall y ((y = x + 1) \rightarrow (x \le y))$$

- $\langle \mathbb{N}, \leq, +, 1 \rangle$: true
- \bullet $\langle \mathbb{N}, >, +, 1 \rangle$: false
- $\{\{0\},\{(0,0)\},+,0\}$: true

$$\forall x \forall y ((y = x + 1) \rightarrow (x \le y))$$

- $\langle \mathbb{N}, \leq, +, 1 \rangle$: true
- \bullet $\langle \mathbb{N}, >, +, 1 \rangle$: false
- $\langle \{0\}, \{(0,0)\}, +, 0 \rangle$: true

$$\forall x \forall y ((y = x + 1) \rightarrow (x \le y))$$

- $\langle \mathbb{N}, \leq, +, 1 \rangle$: true
- $\langle \mathbb{N}, >, +, 1 \rangle$: false
- $\langle \{0\}, \{(0,0)\}, +, 0 \rangle$: true