COMP2111 Week 7

Term 1, 2019
State machines

Summary

Motivation

Definitions

The invariant principle

Partial correctness and termination
Input and output

Finite automata

Summary

Motivation

Definitions

The invariant principle

Partial correctness and termination
Input and output

Finite automata

Motivation: Models of computation
State machines model step-by-step processes:
@ Set of “states”, possibly including a designated ‘start state”
@ For each state, a set of actions detailing how to move
(transition) to other states

Example
The semantics of a program in L:
@ States: functions from variables to numerical values

@ Transitions: defined by the program

Motivation: Models of computation
State machines model step-by-step processes:
@ Set of “states”, possibly including a designated ‘start state”
@ For each state, a set of actions detailing how to move
(transition) to other states

Example
A chess solving engine
@ States: Board positions

@ Transitions: Legal moves

Motivation: Models of computation
State machines model step-by-step processes:
@ Set of “states”, possibly including a designated ‘start state”
@ For each state, a set of actions detailing how to move
(transition) to other states

Example
“Stateful” communication protocols: e.g. SMTP
@ States: Stages of communication

@ Transitions: Determined by commands given (e.g. HELO,
DATA, etc)

Motivation: Models of computation
State machines model step-by-step processes:
@ Set of “states”, possibly including a designated ‘start state”
@ For each state, a set of actions detailing how to move
(transition) to other states

Example

A bounded counter that counts from 0 to 99 and overflows at 100:

H@;@;@J %

Motivation: Models of computation
State machines model step-by-step processes:
@ Set of “states”, possibly including a designated ‘start state”
@ For each state, a set of actions detailing how to move
(transition) to other states

Example
A robot that moves diagonally

States: Locations
Transitions: Moves

Motivation: Models of computation
State machines model step-by-step processes:
@ Set of “states”, possibly including a designated ‘start state”
@ For each state, a set of actions detailing how to move
(transition) to other states

Example

Die Hard jug problem: Given jugs of 3L and 5L, measure out
exactly 4L.

o States: Defined by amount of water in each jug
@ Start state: No water in both jugs

@ Transitions: Pouring water (in, out, jug-to-jug)

Summary

Motivation

Definitions

The invariant principle

Partial correctness and termination
Input and output

Finite automata

Definitions

A transition system is a pair (S, —) where:
@ S is a set (of states), and
@ —»C S x S is a (transition) relation.

If (s,s") €~ we write s — 5.

Definitions

A transition system is a pair (S, —) where:
@ S is a set (of states), and
@ —»C S x S is a (transition) relation.

If (s,s") €= we write s — 5.

@ S may have a designated start state, sp € S

@ S may have designated final states, F C S

Definitions

A transition system is a pair (S, —) where:
@ S is a set (of states), and
@ —»C S x S is a (transition) relation.

If (s,s") €~ we write s — 5.

@ S may have a designated start state, sp € S
@ S may have designated final states, F C S
@ The transitions may be labelled by elements of a set A:

e -CSxAxS
o (s,a,s") € is written as s > 5’

Definitions

A transition system is a pair (S, —) where:
@ S is a set (of states), and
@ —»C S x S is a (transition) relation.

If (s,s") €= we write s — 5.

@ S may have a designated start state, sp € S
@ S may have designated final states, F C S
@ The transitions may be labelled by elements of a set A:
e -CSxAxS
o (s,a,s") € is written as s > 5’
@ If — is a function we say the system is deterministic,
otherwise it is non-deterministic

Example

Example: Bounded counter

A bounded counter that counts from 0 to 99 and overflows at 100:

,@@_@ 9

e $=1{0,1,...,99,overflow}

o =

050:0

{(i,i+1) : 0<i<099}
U {(99, overflow)}
U {(overflow, overflow) }

@ Deterministic

Example: Diagonally moving robot

Example

States: Locations
Transitions: Moves

Example: Diagonally moving robot

Example

S=7Zx17Z

(x,y) > (x£1l,y+1)

Non-deterministic

Example: Diagonally moving robot

Example

S=ZXZ

A = {NW, NE,SW, SE}
(x,y) W (x =1,y + 1)
(x,y) 25 (x + 1,y +1)
(xy) 25 (x— 1,y —1)
(x,y)S—E>(X—i-1,y—1)

Deterministic

Example: Die Hard jug problem

Example
Given jugs of 3L and 5L, measure out exactly 4L.

@ States: Defined by amount of water in each jug
@ Start state: No water in both jugs
@ Transitions: Pouring water (in, out, jug-to-jug)

Example: Die Hard jug problem

Example
Given jugs of 3L and 5L, measure out exactly 4L.

o S={(i,j)eNxN:0<i<5and 0<, <3}
°50:(070)
@ — given by

Example: Die Hard jug problem

Example
Given jugs of 3L and 5L, measure out exactly 4L.

e S={(i,j)ENxN:0</i<5and0<, <3}
e s =(0,0)
@ — given by

o (i,j) = (0,)) [empty 5L jug]
o (i,j)—(i,0) [empty 3L jug]

Example: Die Hard jug problem

Example
Given jugs of 3L and 5L, measure out exactly 4L.

e S={(i,j)ENxN:0</i<5and0<, <3}
e s =(0,0)
@ — given by

o (i,j) = (5,)) [fill 5L jug]
o (i,j) — (i,3) [fill 3L jug]

Example: Die Hard jug problem

Example
Given jugs of 3L and 5L, measure out exactly 4L.

e S={(i,j)ENxN:0</i<5and0<, <3}
e sp=(0,0)
@ — given by

o (i,j)—= (i+4,0)ifi+j<5 [empty 3L jug into 5L jug]
o (i,j)—=(0,i+j)ifi+j<3 [empty 5L jug into 3L jug]

Example: Die Hard jug problem

Example
Given jugs of 3L and 5L, measure out exactly 4L.

e S={(i,j)ENxN:0</i<5and0<, <3}
e sp=(0,0)
@ — given by

(ij)— (5,j—5+i)ifi+j>5 [fill 5L jug from 3L jug]
(i, j))=(—3443)ifi+;>3 [fill 3L jug from 5L jug]

Example: Die Hard jug problem

Example
Given jugs of 3L and 5L, measure out exactly 4L.

o S={(i,j))eNxN:0<i<5and0< <3}

@ 50 = (an)
@ — given by

o (i,j) = (0,)) [empty 5L jug]

o (i,j) = (i,0) [empty 3L jug]

o (i,j) = (5.J) [fill 5L jug]

o (i,j) — (i,3) [fill 3L jug]

o (i,j)—= (i+4,0)if i+ <5 [empty 3L jug into 5L jug]

o (i,j)—=(0,i+j)ifi+j<3 [empty 5L jug into 3L jug]

o (i,j)—=(5,j—5+1i)ifi+j>5 [fill 5L jug from 3L jug]

o (i,j)—(i—3+4+,,3)ifi+j>3 [fill 3L jug from 5L jug]

Runs and reachability

Given a transition system (S,—) and states s,s' € S,

@ a run from s is a (possibly infinite) sequence si, sy,
that s = s; and s; — s for all i > 1.

... such

Runs and reachability

Given a transition system (S,—) and states s,s' € S,

@ a run from s is a (possibly infinite) sequence s1, s, ... such
that s = s; and s; — s for all i > 1.

@ we say s’ is reachable from s, written s —* &, if (s,5') is in
the transitive closure of —.

NB

s’ is reachable from s if there is a run from s which contains s'.

)

Safety and Liveness

Common problem (Safety)

Will a transition system always avoid a particular state or states?

Safety and Liveness

Common problem (Safety)
Will a transition system always avoid a particular state or states?

Common problem (Liveness)

Will a transition system always reach a particular state or states?

Safety and Liveness

Common problem (Safety)

Will a transition system always avoid a particular state or states?
Equivalently, can a transition system reach a particular state or
states?

Common problem (Liveness)

Will a transition system always reach a particular state or states?
Equivalently, can a transition system avoid a particular state or
states?

Reachability example: Die Hard jug problem

Example
Given jugs of 3L and 5L, measure out exactly 4L.

@ States: S={(/,j)) e NxN:0<i<b5and0<,<3}
@ Transition relation: (i,/) — (0,J) etc.

Is (4,0) reachable from (0,0)?

Reachability example: Die Hard jug problem

Example
Given jugs of 3L and 5L, measure out exactly 4L.

@ States: S={(/,j)) e NxN:0<i<b5and0<,<3}
@ Transition relation: (i,/) — (0,J) etc.

Is (4,0) reachable from (0,0)?

Yes:
(0,00 — (0,3) — (3,0)
+
(0,1) « (5,1) « (3,3

0
(1,00 = (1,3) — (4,0)

Safety example: Diagonally moving robot

Example

Starting at (0,0)

Can the robot get to (0,1)?

Example

Safety example: Diagonally moving robot

Starting at (0,0)

Can the robot get to (0,1)?

Example

Safety example: Diagonally moving robot

Starting at (0,0)

Can the robot get to (0,1)? No

Example

Safety example: Diagonally moving robot

Starting at (0,0)

Can the robot get to (0,1)? No

isBlue((m, n)) := 2|(m + n)

Safety example: Diagonally moving robot

Example

Starting at (0,0)
Can the robot get to (0,1)? No
isBlue((m, n)) := 2|(m + n)

if isBlue(s) and s — &’
then isBlue(s’)

Safety example: Diagonally moving robot

Example

Starting at (0,0)

Can the robot get to (0,1)? No
isBlue((m, n)) := 2|(m + n)

if isBlue(s) and s — &’
then isBlue(s’)

isBlue((0,0)) and —isBlue((0,1))

Summary

Motivation

Definitions

The invariant principle

Partial correctness and termination
Input and output

Finite automata

The invariant principle

A preserved invariant of a transition system is a unary predicate
¢ on states such that if ¢(s) holds and s — s’ then ¢(s’) holds.
Invariant principle

If a preserved invariant holds at a state s, then it holds for all
states reachable from s.

The invariant principle

A preserved invariant of a transition system is a unary predicate
¢ on states such that if ¢(s) holds and s — s’ then ¢(s’) holds.
Invariant principle

If a preserved invariant holds at a state s, then it holds for all
states reachable from s.

Proof:

Invariant example: Modified Die Hard problem

Example

Given jugs of 3L and 6L, measure out exactly 4L.

o States: S={(i,j) e NxN :0<i<6and 0<, <3}
@ Transition relation: (i,j) — (0,;) etc.
Is (4,0) reachable from (0,0)?

Invariant example: Modified Die Hard problem

Example
Given jugs of 3L and 6L, measure out exactly 4L.

o States: S={(i,j) e NxN :0<i<6and 0<, <3}
@ Transition relation: (i,j) — (0,;) etc.

Is (4,0) reachable from (0,0)?
No. Consider ¢((7,/)) = (3]7) A (3)).

Summary

Motivation

Definitions

The invariant principle

Partial correctness and termination
Input and output

Finite automata

Partial correctness

Let (S, —, s0, F) be a transition system with start state sp and
final states F and a ¢ be a unary predicate on S. We say the
system is partially correct for ¢ if ©(s’) holds for all states s’ € F
that are reachable from sp.

NB

Partial correctness does not guarantee a transition system will
reach a final state.

Partial correctness example: Fast exponentiation

Example
Consider the following program in L:

X :=m;
y:i=n;
r.=1;
while y > 0 do
if 2|y then
yi=y/2
else
y=(y-1/2
ri=r*x
fi;
X = X * X

od

Partial correctness example: Fast exponentiation
Example

@ States: Functions from {m,n,x,y,r} to N
@ Transitions: Effect of each line of code:

Partial correctness example: Fast exponentiation
Example

@ States: (x,y,r) e Nx Nx N
@ Transitions: Effect of each line of code:

Partial correctness example: Fast exponentiation

Example

@ States: (x,y,r) e Nx Nx N

@ Transitions: Effect of each iteration of while loop:
o (x,y,r) = (x%,y/2,r) if y is even
o (x,y,r) = (X%, (y —1)/2,x) if y is odd

Partial correctness example: Fast exponentiation

Example

@ States: (x,y,r) e Nx Nx N

@ Transitions: Effect of each iteration of while loop:
o (x,y,r) = (x%,y/2,r) if y is even
o (x,y,r) = (x% (y —1)/2,rx) if y is odd

@ Start state: (m,n, 1)

Partial correctness example: Fast exponentiation

Example

@ States: (x,y,r) e Nx Nx N

@ Transitions: Effect of each iteration of while loop:
o (x,y,r) = (x%,y/2,r) if y is even
o (x,y,r) = (x>, (y —1)/2,rx) if y is odd

@ Start state: (m,n, 1)
o Final states: {(x,0,r) : x,r € N}

Partial correctness example: Fast exponentiation

Example

@ States: (x,y,r) e Nx Nx N

@ Transitions: Effect of each iteration of while loop:
o (x,y,r) = (x%,y/2,r) if y is even
o (x,y,r) = (x>, (y —1)/2,rx) if y is odd

o Start state: (m,n, 1)
o Final states: {(x,0,r) : x,r € N}

Goal: Show partial correctness for o((x,y,r)) := (r = m")

Partial correctness example: Fast exponentiation

Example

@ States: (x,y,r) e NxNxN

@ Transitions: Effect of each iteration of while loop:
o (x,y,r) = (x%,y/2,r) if y is even
o (x,y,r) = (x>, (y —1)/2,rx) if y is odd

o Start state: (m,n, 1)
o Final states: {(x,0,r) : x,r € N}

Goal: Show partial correctness for o((x,y,r)) := (r = m")

Show ¥((x, y,r)) := (rx¥ = m") is a preserved invariant...

Partial correctness example: Fast exponentiation

Example

@ States: (x,y,r) e NxNxN

@ Transitions: Effect of each iteration of while loop:
o (x,y,r) = (x%,y/2,r) if y is even
o (x,y,r) = (x>, (y —1)/2,rx) if y is odd

o Start state: (m,n, 1)
o Final states: {(x,0,r) : x,r € N}
Goal: Show partial correctness for o((x,y,r)) := (r = m")

Show ¥((x, y,r)) := (rx¥ = m") is a preserved invariant...

How can we show total correctness?

Total correctness

A transition system (S, —) terminates from a state s € S if there
is an N € N such that all runs from s have length at most N.

A transition system is totally correct for a unary predicate ¢, if
it terminates (from sp) and ¢ holds in the last state of every run.

Derived variables

In a transition system (S, —), a derived variable is a function
f:5S—R.

A derived variable is strictly decreasing if s — s’ implies
f(s') < f(s).

Derived variables

In a transition system (S, —), a derived variable is a function
f:5S—R.

A derived variable is strictly decreasing if s — s’ implies
f(s') < f(s).

Theorem

If f is an N-valued, strictly decreasing derived variable, then the
length of any run from s is at most f(s).

Termination example: Fast exponentiation

Example

@ States: (x,y,r) e Nx Nx N

@ Transitions: Effect of each iteration of while loop:
o (x,y,r) = (x%,y/2,r) if y is even
o (x,y,r) = (X% (y —1)/2,x) if y is odd

Derived variable:

Termination example: Fast exponentiation

Example

@ States: (x,y,r) e Nx Nx N

@ Transitions: Effect of each iteration of while loop:
o (x,y,r) = (x%,y/2,r) if y is even
o (x,y,r) = (X% (y —1)/2,x) if y is odd

Derived variable: f((x,y,r)) =y

Summary

Motivation

Definitions

The invariant principle

Partial correctness and termination
Input and output

Finite automata

Interaction with the environment

We can model the system interacting with an external entity via
inputs (X) and outputs (I') by using labelled transitions:
—CSXxAxSwhere A\=2L xT

Two main categories of input/output transition systems:
Acceptors: Accept/reject a sequence of inputs

Transducers: Take a sequence of inputs and produce a sequence
of outputs

Interaction with the environment

We can model the system interacting with an external entity via
inputs (X) and outputs (I') by using labelled transitions:
—CSXxAxSwhere A\=2L xT

Two main categories of input/output transition systems:
Acceptors: Accept/reject a sequence of inputs (Relations)

Transducers: Take a sequence of inputs and produce a sequence
of outputs (Functions)

Acceptor example: Diagonally moving robot
Example
S=ZXZ
so = (0,0)

(6, y) 2 (x — 1,y +1)
(,y) 25 (x+ 1,y +1)
(
(

%) s (x =1,y —1)

x,y) 5 (x+1,y —1)

Accept if (2,2) reached

Acceptor example: Diagonally moving robot

Example

S=ZXZ

so = (0,0)

(6y) 2 (x =1,y +1)
(,9) 25 (x+ 1,y +1)
(6,9) 25 (x =Ly —1)
(x,y) o, (x+1,y—1)
Accept if (2,2) reached

Accepted sequences:
NE, NE

Acceptor example: Diagonally moving robot
Example
S=ZXZ
so = (0,0)

(6, y) 2 (x — 1,y +1)
(,y) 25 (x+ 1,y +1)
(x,y) 2% (x =1y = 1)
(x,y)i(x—i—l,y—l)

Accept if (2,2) reached

Accepted sequences:
NE, NE
NE,SE, NE, NW

Acceptor example: Diagonally moving robot
Example
S=7ZXx1Z
so = (0,0)

(6, y) 2 (x — 1,y +1)
(,y) 25 (x+ 1,y +1)
(x,y) 2% (x =1y = 1)
(x,y)s—E>(x+1,y—1)

Accept if (2,2) reached

Accepted sequences:
NE, NE

NE,SE, NE, NW
NE, NE, NE,SW ...

Transducer example: Diagonally moving robot

Example
S=7Zx17

S0 = (0, 0)

(x,y) 22 (x =1,y + 1)

(%,y) 25 (x+1,y + 1)
SW /x

(x,¥)

— (x—=-1,y-1)
SE/x
(%, y) 255 (x+ 1,y — 1)

Input direction
Output x-coordinate

Transducer example: Diagonally moving robot

Example

S=7ZXx17Z

S0 = (0,0)

(x,y) 22 (x =1,y + 1)

(%, y) 225 (x+ 1,y + 1)
sw/

<x,y)-E/—X+(x—1 y—1)
(x,y) — (x+ 1,y = 1)
Input direction

Output x-coordinate

Input: NE,SE, NE, NW
Output: 1,2,3,2

Transducer example: Diagonally moving robot
Example

S=7ZX1Z

so = (0 0)

(x,y) 2L, (x =1,y +1)
(oy) =% /(x+1y+1>
(x,y) 2 (x —1,y — 1)
(x,y)—/>(x+1,y—1)

Input direction
Output y-coordinate

Input: NE, SE, NE, N\W
Output: 1,0,1,2

Acceptor example: Die Hard jug problem

Example
© S={(i,j)ENxN:0<i<5and0<j<3}
o 50:(0,0)

@ — given by

o (i,j) —(0,)) [empty 5L jug]
o (i.j) = (i,0) [empty 3L jug]
o (i,j) = (5,)) [fill 5L jug]
o (i,j) 2 (i,3) [fill 3L jug]
o (i,j) = (i+4,0)ifi+j<5 [empty 3L jug into 5L jug]
o (i,)) E53, (0,i4+j)ifi+j<3 [empty 5L jug into 3L jug]
o (i,)) B3, (5,j—5+1i))ifi+j>5 [fill 5L jug from 3L jug]
o (i) 2% (i—3+4,3)ifi+j>3 [fill 3L jug from 5L jug]

@ Accept if (4,0) is reached:

Acceptor example: Die Hard jug problem

Example
© S={(i,j)ENxN:0<i<5and0<j<3}
o 50:(0,0)

@ — given by

o (i,j) —(0,)) [empty 5L jug]
o (i.j) = (i,0) [empty 3L jug]
o (i,j) = (5,)) [fill 5L jug]
o (i,j) 2 (i,3) [fill 3L jug]
o (i,j) = (i+4,0)ifi+j<5 [empty 3L jug into 5L jug]
o (i,)) E53, (0,i4+j)ifi+j<3 [empty 5L jug into 3L jug]
o (i,)) B3, (5,j—5+1i))ifi+j>5 [fill 5L jug from 3L jug]
o (i) 2% (i—3+4,3)ifi+j>3 [fill 3L jug from 5L jug]

@ Accept if (4,0) is reached: e.g. F3, E35, F3, F53, E5, E35, F3, E35

e-transitions

It can be useful to allow the system to transition without taking
input or producing output. We use the special symbol € to denote
such transitions.

Formal definitions

An acceptor is a ¥ U {e}-labelled transition system
A= (S,—, X, s, F) with a start state sp € S and a set of final
states F C S.

A transducer is a (X U {e}) x (I' U {€})-labelled transition system
T =(S,—,X, s, F) with a start state sp € S and a set of final
states F C S.

Summary

Motivation

Definitions

The invariant principle

Partial correctness and termination
Input and output

Finite automata

Finite state transition systems

State transition systems with a finite set of states are particularly
useful in Computer Science.

Acceptors: Finite state automata

Transducers: Mealy machines

