COMP2111 Week 7
Term 1, 2019
State machines

Summary

- Motivation
- Definitions
- The invariant principle
- Partial correctness and termination
- Input and output
- Finite automata

Summary

- Motivation
- Definitions
- The invariant principle
- Partial correctness and termination
- Input and output
- Finite automata

State machines model step-by-step processes:

- Set of "states", possibly including a designated "start state"
- For each state, a set of actions detailing how to move (transition) to other states

Example

The semantics of a program in \mathcal{L} :

- States: functions from variables to numerical values
- Transitions: defined by the program

State machines model step-by-step processes:

- Set of "states", possibly including a designated "start state"
- For each state, a set of actions detailing how to move (transition) to other states

Example

A chess solving engine

- States: Board positions
- Transitions: Legal moves

State machines model step-by-step processes:

- Set of "states", possibly including a designated "start state"
- For each state, a set of actions detailing how to move (transition) to other states

Example

"Stateful" communication protocols: e.g. SMTP

- States: Stages of communication
- Transitions: Determined by commands given (e.g. HELO, DATA, etc)

State machines model step-by-step processes:

- Set of "states", possibly including a designated "start state"
- For each state, a set of actions detailing how to move (transition) to other states

Example

A bounded counter that counts from 0 to 99 and overflows at 100:

State machines model step-by-step processes:

- Set of "states", possibly including a designated "start state"
- For each state, a set of actions detailing how to move (transition) to other states

State machines model step-by-step processes:

- Set of "states", possibly including a designated "start state"
- For each state, a set of actions detailing how to move (transition) to other states

Example

Die Hard jug problem: Given jugs of 3L and 5L, measure out exactly 4L.

- States: Defined by amount of water in each jug
- Start state: No water in both jugs
- Transitions: Pouring water (in, out, jug-to-jug)

Summary

- Motivation
- Definitions
- The invariant principle
- Partial correctness and termination
- Input and output
- Finite automata

A **transition system** is a pair (S, \rightarrow) where:

- S is a set (of **states**), and
- $\rightarrow \subseteq S \times S$ is a (transition) relation.

- ullet S may have a designated **start state**, $s_0 \in S$
- S may have designated **final states**, $F \subseteq S$
- The transitions may be **labelled** by elements of a set Λ :
 - $\rightarrow \subseteq S \times \Lambda \times S$
 - $(s, a, s') \in \rightarrow$ is written as $s \stackrel{a}{\rightarrow} s'$
- If → is a function we say the system is deterministic, otherwise it is non-deterministic

A **transition system** is a pair (S, \rightarrow) where:

- S is a set (of **states**), and
- $\rightarrow \subseteq S \times S$ is a (transition) relation.

- S may have a designated **start state**, $s_0 \in S$
- S may have designated **final states**, $F \subseteq S$
- The transitions may be labelled by elements of a set Λ:
 - $\bullet \rightarrow \subseteq S \times \Lambda \times S$
 - $(s, a, s') \in \rightarrow$ is written as $s \stackrel{a}{\rightarrow} s'$
- If → is a function we say the system is deterministic, otherwise it is non-deterministic

A **transition system** is a pair (S, \rightarrow) where:

- S is a set (of states), and
- $\rightarrow \subseteq S \times S$ is a (transition) relation.

- S may have a designated **start state**, $s_0 \in S$
- S may have designated **final states**, $F \subseteq S$
- The transitions may be labelled by elements of a set Λ:
 - $\rightarrow \subseteq S \times \Lambda \times S$
 - $(s, a, s') \in \rightarrow$ is written as $s \stackrel{a}{\rightarrow} s'$
- If → is a function we say the system is deterministic, otherwise it is non-deterministic

A **transition system** is a pair (S, \rightarrow) where:

- S is a set (of states), and
- $\rightarrow \subseteq S \times S$ is a (transition) relation.

- S may have a designated **start state**, $s_0 \in S$
- S may have designated **final states**, $F \subseteq S$
- The transitions may be labelled by elements of a set Λ:
 - $\rightarrow \subseteq S \times \Lambda \times S$
 - $(s, a, s') \in \rightarrow$ is written as $s \stackrel{a}{\rightarrow} s'$
- If → is a function we say the system is deterministic, otherwise it is non-deterministic

Example: Bounded counter

Example

A bounded counter that counts from 0 to 99 and overflows at 100:

- $S = \{0, 1, \dots, 99, \text{overflow}\}$
 - $\{(i, i+1) : 0 \le i < 99\}$
- $\bullet \rightarrow= \cup \{(99, overflow)\} \\ \cup \{(overflow, overflow)\}$
- $s_0 = 0$
- Deterministic

Example: Diagonally moving robot

Example: Diagonally moving robot

Example

$$S = \mathbb{Z} \times \mathbb{Z}$$

$$(x,y) \rightarrow (x \pm 1, y \pm 1)$$

Non-deterministic

Example: Diagonally moving robot

Example

$$S = \mathbb{Z} \times \mathbb{Z}$$

$$\Lambda = \{NW, NE, SW, SE\}$$

$$(x,y) \xrightarrow{NW} (x-1,y+1)$$

$$(x,y) \xrightarrow{NE} (x+1,y+1)$$

$$(x,y) \xrightarrow{SW} (x-1,y-1)$$

$$(x,y) \xrightarrow{SE} (x+1,y-1)$$

Deterministic

Example

Given jugs of 3L and 5L, measure out exactly 4L.

- States: Defined by amount of water in each jug
- Start state: No water in both jugs
- Transitions: Pouring water (in, out, jug-to-jug)

Example

Given jugs of 3L and 5L, measure out exactly 4L.

- $S = \{(i,j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 5 \text{ and } 0 \le j \le 3\}$
- $s_0 = (0,0)$
- ullet ightarrow given by

```
• (i,j) \to (i,0)

• (i,j) \to (i,0)

• (i,j) \to (5,j)

• (i,j) \to (i,3)

• (i,j) \to (i+j,0) if i+j \le 5

• (i,j) \to (0,i+j) if i+j \le 3

• (i,j) \to (5,j-5+i) if i+j \ge 3

• (i,j) \to (5,j-5+i) if i+j \ge 3
```

```
[empty 5L jug]
[empty 3L jug]
[fill 5L jug]
[fill 3L jug]
jug into 5L jug]
jug into 3L jug]
jug from 3L jug]
jug from 5L jug]
```

Example

Given jugs of 3L and 5L, measure out exactly 4L.

- $S = \{(i,j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 5 \text{ and } 0 \le j \le 3\}$
- $s_0 = (0,0)$
- \bullet \rightarrow given by
 - $(i,j) \rightarrow (0,j)$
 - \bullet $(i,j) \rightarrow (i,0)$

[empty 5L jug] [empty 3L jug]

Example

Given jugs of 3L and 5L, measure out exactly 4L.

- $S = \{(i,j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 5 \text{ and } 0 \le j \le 3\}$
- $s_0 = (0,0)$
- ullet ightarrow given by
 - $(i,j) \rightarrow (5,j)$
 - $(i,j) \rightarrow (i,3)$

[fill 5L jug] [fill 3L jug]

Example

Given jugs of 3L and 5L, measure out exactly 4L.

- $S = \{(i,j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 5 \text{ and } 0 \le j \le 3\}$
- $s_0 = (0,0)$
- ullet \to given by

- $(i, j) \rightarrow (i + j, 0)$ if $i + j \le 5$
- $(i,j) \to (0,i+j)$ if $i+j \le 3$

[empty 3L jug into 5L jug] [empty 5L jug into 3L jug]

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ ○ 章 ◆○○○

Example

Given jugs of 3L and 5L, measure out exactly 4L.

- $S = \{(i,j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 5 \text{ and } 0 \le j \le 3\}$
- $s_0 = (0,0)$
- \bullet \rightarrow given by

•
$$(i,j) \to (0,j)$$

• $(i,j) \to (i,0)$

$$\bullet$$
 $(i,i) \rightarrow (5,i)$

$$\bullet$$
 (i i) \rightarrow (i 3

$$\bullet$$
 $(i,i) \rightarrow (i+i,0)$ if

•
$$(i,j) \to (0,i+j)$$
 if $i+j \le 3$

•
$$(i,j) \to (5,j-5+i)$$
 if $i+j \ge 5$

•
$$(i,j) \to (i-3+j,3)$$
 if $i+j \ge 3$

Example

Given jugs of 3L and 5L, measure out exactly 4L.

- $S = \{(i, j) \in \mathbb{N} \times \mathbb{N} : 0 < i < 5 \text{ and } 0 < j < 3\}$
- $s_0 = (0,0)$
- $\bullet \rightarrow \text{given by}$

```
\bullet (i,j) \rightarrow (0,j)
\bullet (i, j) \rightarrow (i, 0)
\bullet (i, j) \rightarrow (5, j)
\bullet (i, j) \rightarrow (i, 3)
• (i, j) \rightarrow (i + j, 0) if i + j < 5
```

```
• (i, j) \to (0, i + j) if i + j < 3
• (i, j) \rightarrow (5, j - 5 + i) if i + j > 5
```

```
• (i, j) \rightarrow (i - 3 + j, 3) if i + j > 3
```

```
[empty 5L jug]
[empty 3L jug]
   [fill 5L jug]
```

[fill 3L jug from 5L jug]

Runs and reachability

Given a transition system (S, \rightarrow) and states $s, s' \in S$,

- a **run** from s is a (possibly infinite) sequence s_1, s_2, \ldots such that $s = s_1$ and $s_i \to s_{i+1}$ for all $i \ge 1$.
- we say s' is **reachable** from s, written $s \to^* s'$, if (s, s') is in the transitive closure of \to .

ΝE

s' is reachable from s if there is a run from s which contains s'

Runs and reachability

Given a transition system (S, \rightarrow) and states $s, s' \in S$,

- a **run** from s is a (possibly infinite) sequence s_1, s_2, \ldots such that $s = s_1$ and $s_i \to s_{i+1}$ for all $i \ge 1$.
- we say s' is **reachable** from s, written $s \to^* s'$, if (s, s') is in the transitive closure of \to .

NB

s' is reachable from s if there is a run from s which contains s'.

Safety and Liveness

Common problem (Safety)

Will a transition system always avoid a particular state or states?

Equivalently, can a transition system reach a particular state or states?

Common problem (Liveness)

Will a transition system always reach a particular state or states?

Safety and Liveness

Common problem (Safety)

Will a transition system always avoid a particular state or states?

Equivalently, can a transition system reach a particular state or states?

Common problem (Liveness)

Will a transition system always reach a particular state or states?

Equivalently, can a transition system avoid a particular state or states?

Safety and Liveness

Common problem (Safety)

Will a transition system always avoid a particular state or states? Equivalently, can a transition system reach a particular state or states?

Common problem (Liveness)

Will a transition system always reach a particular state or states? Equivalently, can a transition system avoid a particular state or states?

Reachability example: Die Hard jug problem

Example

Given jugs of 3L and 5L, measure out exactly 4L.

- States: $S = \{(i,j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 5 \text{ and } 0 \le j \le 3\}$
- Transition relation: $(i,j) \rightarrow (0,j)$ etc.

Is (4,0) reachable from (0,0)?

$$(0,0) \rightarrow (0,3) \rightarrow (3,0)$$
 \downarrow
 $(0,1) \leftarrow (5,1) \leftarrow (3,3)$
 \downarrow
 $(1,0) \rightarrow (1,3) \rightarrow (4,0)$

Reachability example: Die Hard jug problem

Example

Given jugs of 3L and 5L, measure out exactly 4L.

- States: $S = \{(i, j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 5 \text{ and } 0 \le j \le 3\}$
- Transition relation: $(i,j) \rightarrow (0,j)$ etc.

Is (4,0) reachable from (0,0)?

Yes:

Safety example: Diagonally moving robot

Safety example: Diagonally moving robot

Example Starting at (0,0)Can the robot get to (0,1)? No isBlue((m, n)) := 2|(m + n)|if isBlue(s) and $s \rightarrow s'$ then isBlue(s')isBlue((0,0)) and $\neg isBlue((0,1))$

Summary

- Motivation
- Definitions
- The invariant principle
- Partial correctness and termination
- Input and output
- Finite automata

The invariant principle

A **preserved invariant** of a transition system is a unary predicate φ on states such that if $\varphi(s)$ holds and $s \to s'$ then $\varphi(s')$ holds.

Invariant principle

If a preserved invariant holds at a state s, then it holds for all states reachable from s.

Proof

The invariant principle

A **preserved invariant** of a transition system is a unary predicate φ on states such that if $\varphi(s)$ holds and $s \to s'$ then $\varphi(s')$ holds.

Invariant principle

If a preserved invariant holds at a state s, then it holds for all states reachable from s.

Proof:

Invariant example: Modified Die Hard problem

Example

Given jugs of 3L and 6L, measure out exactly 4L.

- States: $S = \{(i,j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 6 \text{ and } 0 \le j \le 3\}$
- Transition relation: $(i,j) \rightarrow (0,j)$ etc.

Is (4,0) reachable from (0,0)?

Invariant example: Modified Die Hard problem

Example

Given jugs of 3L and 6L, measure out exactly 4L.

- States: $S = \{(i,j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 6 \text{ and } 0 \le j \le 3\}$
- Transition relation: $(i,j) \rightarrow (0,j)$ etc.

Is (4,0) reachable from (0,0)?

No. Consider $\varphi((i,j)) = (3|i) \wedge (3|j)$.

Summary

- Motivation
- Definitions
- The invariant principle
- Partial correctness and termination
- Input and output
- Finite automata

Partial correctness

Let (S, \to, s_0, F) be a transition system with start state s_0 and final states F and a φ be a unary predicate on S. We say the system is **partially correct for** φ if $\varphi(s')$ holds for all states $s' \in F$ that are reachable from s_0 .

NB

Partial correctness does not guarantee a transition system will reach a final state.

Example

Consider the following program in \mathcal{L} :

```
x := m;
y := n;
r := 1;
while y > 0 do
  if 2|y then
    y := y/2
  else
    y := (y-1)/2;
    r := r * x
  fi:
  x := x * x
od
```

Example

- States: Functions from $\{m, n, x, y, r\}$ to \mathbb{N}
- Transitions: Effect of each line of code:

```
\bullet (x,y,r) \rightarrow (x^2,y/2,r) if y is even
```

•
$$(x, y, r) \to (x^2, (y - 1)/2, rx)$$
 if y is odd

- Start state: (m, n, 1)
- Final states: $\{(x,0,r): x,r \in \mathbb{N}\}$

Goal: Show partial correctness for $\varphi((x, y, r)) := (r = m^n)$

Show $\psi((x,y,r)):=(rx^y=m^n)$ is a preserved invariant..

Example

- States: $(x, y, r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- Transitions: Effect of each line of code:
 - \bullet $(x,y,r) \rightarrow (x^2,y/2,r)$ if y is even
 - $(x, y, r) \to (x^2, (y 1)/2, rx)$ if y is odd
- Start state: (m, n, 1)
- Final states: $\{(x,0,r): x,r \in \mathbb{N}\}$

Goal: Show partial correctness for $\varphi((x, y, r)) := (r = m^n)$

Show $\psi((x,y,r)):=(rx^y=m^n)$ is a preserved invariant..

Example

- States: $(x, y, r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- Transitions: Effect of each iteration of while loop:
 - $(x, y, r) \rightarrow (x^2, y/2, r)$ if y is even
 - $(x, y, r) \to (x^2, (y-1)/2, rx)$ if y is odd
- Start state: (m, n, 1)
- Final states: $\{(x,0,r):x,r\in\mathbb{N}\}$

Goal: Show partial correctness for $\varphi((x, y, r)) := (r = m^n)$

Show $\psi((x,y,r)) := (rx^y = m^n)$ is a preserved invariant..

Example

- States: $(x, y, r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- Transitions: Effect of each iteration of while loop:
 - $(x, y, r) \rightarrow (x^2, y/2, r)$ if y is even
 - $(x, y, r) \to (x^2, (y-1)/2, rx)$ if y is odd
- Start state: (m, n, 1)
- Final states: $\{(x,0,r): x,r \in \mathbb{N}\}$

Goal: Show partial correctness for $\varphi((x,y,r)):=(r=m^n)$

Show $\psi((x, y, r)) := (rx^y = m^n)$ is a preserved invariant.

Example

- States: $(x, y, r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- Transitions: Effect of each iteration of while loop:
 - $(x, y, r) \rightarrow (x^2, y/2, r)$ if y is even
 - $(x, y, r) \to (x^2, (y 1)/2, rx)$ if y is odd
- Start state: (*m*, *n*, 1)
- Final states: $\{(x,0,r): x,r \in \mathbb{N}\}$

Goal: Show partial correctness for $arphi((x,y,r)):=(r=m^n)$

Show $\psi((x,y,r)) := (rx^y = m^n)$ is a preserved invariant.

Example

- States: $(x, y, r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- Transitions: Effect of each iteration of while loop:
 - $(x, y, r) \rightarrow (x^2, y/2, r)$ if y is even
 - $(x, y, r) \to (x^2, (y-1)/2, rx)$ if y is odd
- Start state: (*m*, *n*, 1)
- Final states: $\{(x,0,r): x,r \in \mathbb{N}\}$

Goal: Show partial correctness for $\varphi((x, y, r)) := (r = m^n)$

Show $\psi((x,y,r)) := (rx^y = m^n)$ is a preserved invariant.

Example

- States: $(x, y, r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- Transitions: Effect of each iteration of while loop:
 - $(x, y, r) \rightarrow (x^2, y/2, r)$ if y is even
 - $(x, y, r) \rightarrow (x^2, (y 1)/2, rx)$ if y is odd
- Start state: (m, n, 1)
- Final states: $\{(x,0,r): x,r \in \mathbb{N}\}$

Goal: Show partial correctness for $\varphi((x, y, r)) := (r = m^n)$

Show $\psi((x, y, r)) := (rx^y = m^n)$ is a preserved invariant...

Example

- States: $(x, y, r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- Transitions: Effect of each iteration of while loop:
 - $(x, y, r) \rightarrow (x^2, y/2, r)$ if y is even
 - $(x, y, r) \to (x^2, (y 1)/2, rx)$ if y is odd
- Start state: (*m*, *n*, 1)
- Final states: $\{(x,0,r): x,r \in \mathbb{N}\}$

Goal: Show partial correctness for $\varphi((x, y, r)) := (r = m^n)$

Show $\psi((x, y, r)) := (rx^y = m^n)$ is a preserved invariant...

Total correctness

A transition system (S, \rightarrow) **terminates** from a state $s \in S$ if there is an $N \in \mathbb{N}$ such that all runs from s have length at most N.

A transition system is **totally correct for a unary predicate** φ , if it terminates (from s_0) and φ holds in the last state of every run.

Derived variables

In a transition system (S, \rightarrow) , a **derived variable** is a function $f: S \rightarrow \mathbb{R}$.

A derived variable is **strictly decreasing** if $s \to s'$ implies f(s') < f(s).

Theorem

If f is an \mathbb{N} -valued, strictly decreasing derived variable, then the length of any run from s is at most f(s).

Derived variables

In a transition system (S, \rightarrow) , a **derived variable** is a function $f: S \rightarrow \mathbb{R}$.

A derived variable is **strictly decreasing** if $s \to s'$ implies f(s') < f(s).

Theorem

If f is an \mathbb{N} -valued, strictly decreasing derived variable, then the length of any run from s is at most f(s).

Termination example: Fast exponentiation

Example

- States: $(x, y, r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- Transitions: Effect of each iteration of while loop:
 - $(x, y, r) \rightarrow (x^2, y/2, r)$ if y is even
 - $(x, y, r) \to (x^2, (y-1)/2, rx)$ if y is odd

Derived variable: f((x, y, r)) = y

Termination example: Fast exponentiation

Example

- States: $(x, y, r) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- Transitions: Effect of each iteration of while loop:
 - $(x, y, r) \rightarrow (x^2, y/2, r)$ if y is even
 - $(x, y, r) \rightarrow (x^2, (y-1)/2, rx)$ if y is odd

Derived variable: f((x, y, r)) = y

Summary

- Motivation
- Definitions
- The invariant principle
- Partial correctness and termination
- Input and output
- Finite automata

Interaction with the environment

We can model the system interacting with an external entity via inputs (Σ) and outputs (Γ) by using **labelled transitions**: $\rightarrow \subset S \times \Lambda \times S$ where $\Lambda = \Sigma \times \Gamma$

Two main categories of input/output transition systems:

Acceptors: Accept/reject a sequence of inputs (Relations)

Transducers: Take a sequence of inputs and produce a sequence of outputs (Functions)

Interaction with the environment

We can model the system interacting with an external entity via inputs (Σ) and outputs (Γ) by using **labelled transitions**: $\rightarrow \subset S \times \Lambda \times S$ where $\Lambda = \Sigma \times \Gamma$

Two main categories of input/output transition systems:

Acceptors: Accept/reject a sequence of inputs (Relations)

Transducers: Take a sequence of inputs and produce a sequence of outputs (Functions)

Example

$$S = \mathbb{Z} \times \mathbb{Z}$$

$$s_0 = (0,0)$$

$$(x,y) \xrightarrow{NW} (x-1,y+1)$$

$$(x,y) \xrightarrow{NE} (x+1,y+1)$$

$$(x,y) \xrightarrow{SW} (x-1,y-1)$$

$$(x,y) \xrightarrow{SE} (x+1,y-1)$$
Accept if $(2,2)$ reached

Example

$$S = \mathbb{Z} \times \mathbb{Z}$$

$$s_0 = (0,0)$$

$$(x,y) \xrightarrow{NW} (x-1,y+1)$$

$$(x,y) \xrightarrow{NE} (x+1,y+1)$$

$$(x,y) \xrightarrow{NE} (x+1,y+1)$$

$$(x, y) \xrightarrow{SW} (x - 1, y - 1)$$

 $(x, y) \xrightarrow{SE} (x + 1, y - 1)$

Accept if (2, 2) reached

Accepted sequences: NE, NE

Example

$$S = \mathbb{Z} \times \mathbb{Z}$$

$$s_0=(0,0)$$

$$(x,y) \xrightarrow{NW} (x-1,y+1)$$

$$(x,y) \xrightarrow{NE} (x+1,y+1)$$

$$(x,y) \xrightarrow{SW} (x-1,y-1)$$

$$(x,y) \xrightarrow{SE} (x+1,y-1)$$

Accept if (2,2) reached

Accepted sequences:

NE, NE

NE, SE, NE, NW

Example

$$S = \mathbb{Z} \times \mathbb{Z}$$

$$s_0 = (0,0)$$

$$(x,y) \xrightarrow{NW} (x-1,y+1)$$

$$(x,y) \xrightarrow{SE} (x+1,y+1)$$

$$(x,y) \xrightarrow{SE} (x-1,y-1)$$

$$(x,y) \xrightarrow{SE} (x+1,y-1)$$

Accept if (2,2) reached

Accepted sequences:

NE, NE NE, SE, NE, NW NE, NE, NE, SW ...

Transducer example: Diagonally moving robot

Example

$$S = \mathbb{Z} \times \mathbb{Z}$$

$$s_0 = (0,0)$$

$$(x,y) \xrightarrow{NW/x} (x-1,y+1)$$

$$(x,y) \xrightarrow{SW/x} (x+1,y+1)$$

$$(x,y) \xrightarrow{SE/x} (x-1,y-1)$$

$$(x,y) \xrightarrow{SE/x} (x+1,y-1)$$

Input direction
Output *x*-coordinate

Transducer example: Diagonally moving robot

Example

$$S = \mathbb{Z} \times \mathbb{Z}$$

$$s_0=(0,0)$$

$$(x,y) \xrightarrow{NW/x} (x-1,y+1)$$

$$(x,y) \xrightarrow{NE/x} (x+1,y+1)$$

$$(x,y) \xrightarrow{SW/x} (x-1,y-1)$$

$$(x,y) \xrightarrow{SE/x} (x+1,y-1)$$

Input direction

Output *x*-coordinate

Input: NE, SE, NE, NW

Output: 1, 2, 3, 2

Transducer example: Diagonally moving robot

Example

$$S = \mathbb{Z} \times \mathbb{Z}$$

$$s_0 = (0,0)$$

$$(x,y) \xrightarrow{NW/y} (x-1,y+1)$$

$$(x,y) \xrightarrow{NE/y} (x+1,y+1)$$

$$(x,y) \xrightarrow{SW/y} (x-1,y-1)$$

$$(x,y) \xrightarrow{SE/y} (x+1,y-1)$$

Input direction

Output *y*-coordinate

Input: NE, SE, NE, NW

Output: 1, 0, 1, 2

Acceptor example: Die Hard jug problem

Example

- $S = \{(i, j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 5 \text{ and } 0 \le j \le 3\}$
- $s_0 = (0,0)$
- \bullet \rightarrow given by
 - \bullet $(i,j) \xrightarrow{E5} (0,j)$
 - $(i,j) \xrightarrow{E3} (i,0)$
 - $(i, i) \xrightarrow{F5} (5, i)$
 - \bullet $(i,i) \xrightarrow{F3} (i,3)$
 - $(i, j) \xrightarrow{E35} (i + j, 0)$ if $i + j \le 5$ [empty 3L jug into 5L jug]
 - $(i, i) \xrightarrow{E53} (0, i + i)$ if $i + i \le 3$ [empty 5L jug into 3L jug]
 - $(i, j) \xrightarrow{F53} (5, j 5 + i)$ if i + j > 5
 - $(i, i) \xrightarrow{\text{F35}} (i 3 + i, 3)$ if $i + i \ge 3$ [fill 3L jug from 5L jug]
- Accept if (4,0) is reached: e.g. F3, E35, F3, F53, E5, E35, F3, E35

[fill 5L jug from 3L jug]

[empty 5L jug]

[empty 3L jug]

[fill 5L jug]

[fill 3L jug]

Acceptor example: Die Hard jug problem

Example

- $S = \{(i, j) \in \mathbb{N} \times \mathbb{N} : 0 \le i \le 5 \text{ and } 0 \le j \le 3\}$
- $s_0 = (0,0)$
- \bullet \rightarrow given by
 - \bullet $(i,j) \xrightarrow{E5} (0,j)$
 - $(i,i) \xrightarrow{E3} (i,0)$
 - $(i, i) \xrightarrow{F5} (5, i)$
 - \bullet $(i,i) \xrightarrow{F3} (i,3)$
 - $(i, j) \xrightarrow{E35} (i + j, 0)$ if $i + j \le 5$ [empty 3L jug into 5L jug]
 - $(i, i) \xrightarrow{E53} (0, i + i)$ if $i + i \le 3$ [empty 5L jug into 3L jug]
 - $(i, j) \xrightarrow{\text{F53}} (5, j 5 + i)$ if $i + j \ge 5$ [fill 5L jug from 3L jug]
 - $(i, i) \xrightarrow{\text{F35}} (i 3 + i, 3)$ if $i + i \ge 3$ [fill 3L jug from 5L jug]
- Accept if (4,0) is reached: e.g. F3, E35, F3, F53, E5, E35, F3, E35

[empty 5L jug]

[empty 3L jug]

[fill 5L jug]

[fill 3L jug]

ϵ-transitions

It can be useful to allow the system to transition without taking input or producing output. We use the special symbol ϵ to denote such transitions.

Formal definitions

An **acceptor** is a $\Sigma \cup \{\epsilon\}$ -labelled transition system $A = (S, \rightarrow, \Sigma, s_0, F)$ with a start state $s_0 \in S$ and a set of final states $F \subseteq S$.

A **transducer** is a $(\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\})$ -labelled transition system $T = (S, \rightarrow, \Sigma, s_0, F)$ with a start state $s_0 \in S$ and a set of final states $F \subseteq S$.

Summary

- Motivation
- Definitions
- The invariant principle
- Partial correctness and termination
- Input and output
- Finite automata

Finite state transition systems

State transition systems with a finite set of states are particularly useful in Computer Science.

Acceptors: Finite state automata

Transducers: Mealy machines

