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Motivation: Models of computation
State machines model step-by-step processes:
@ Set of “states”, possibly including a designated ‘start state”
@ For each state, a set of actions detailing how to move
(transition) to other states

Example
The semantics of a program in L:
@ States: functions from variables to numerical values

@ Transitions: defined by the program




Motivation: Models of computation
State machines model step-by-step processes:
@ Set of “states”, possibly including a designated ‘start state”
@ For each state, a set of actions detailing how to move
(transition) to other states

Example
A chess solving engine
@ States: Board positions

@ Transitions: Legal moves




Motivation: Models of computation
State machines model step-by-step processes:
@ Set of “states”, possibly including a designated ‘start state”
@ For each state, a set of actions detailing how to move
(transition) to other states

Example
“Stateful” communication protocols: e.g. SMTP
@ States: Stages of communication

@ Transitions: Determined by commands given (e.g. HELO,
DATA, etc)




Motivation: Models of computation
State machines model step-by-step processes:
@ Set of “states”, possibly including a designated ‘start state”
@ For each state, a set of actions detailing how to move
(transition) to other states

Example

A bounded counter that counts from 0 to 99 and overflows at 100:

H@;@;@J %




Motivation: Models of computation
State machines model step-by-step processes:
@ Set of “states”, possibly including a designated ‘start state”
@ For each state, a set of actions detailing how to move
(transition) to other states

Example
A robot that moves diagonally

States: Locations
Transitions: Moves




Motivation: Models of computation
State machines model step-by-step processes:
@ Set of “states”, possibly including a designated ‘start state”
@ For each state, a set of actions detailing how to move
(transition) to other states

Example

Die Hard jug problem: Given jugs of 3L and 5L, measure out
exactly 4L.

o States: Defined by amount of water in each jug
@ Start state: No water in both jugs

@ Transitions: Pouring water (in, out, jug-to-jug)
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Definitions

A transition system is a pair (S, —) where:
@ S is a set (of states), and
@ —»C S x S is a (transition) relation.

If (s,s") €~ we write s — 5.
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@ S may have a designated start state, sp € S

@ S may have designated final states, F C S



Definitions

A transition system is a pair (S, —) where:
@ S is a set (of states), and
@ —»C S x S is a (transition) relation.

If (s,s") €~ we write s — 5.

@ S may have a designated start state, sp € S
@ S may have designated final states, F C S
@ The transitions may be labelled by elements of a set A:

e -CSxAxS
o (s,a,s") € is written as s > 5’



Definitions

A transition system is a pair (S, —) where:
@ S is a set (of states), and
@ —»C S x S is a (transition) relation.

If (s,s") €= we write s — 5.

@ S may have a designated start state, sp € S
@ S may have designated final states, F C S
@ The transitions may be labelled by elements of a set A:
e -CSxAxS
o (s,a,s") € is written as s > 5’
@ If — is a function we say the system is deterministic,
otherwise it is non-deterministic



Example

Example: Bounded counter

A bounded counter that counts from 0 to 99 and overflows at 100:

_,@_@_@ 9

e $=1{0,1,...,99,overflow}

o =

050:0

{(i,i+1) : 0<i<099}
U {(99, overflow)}
U {(overflow, overflow) }

@ Deterministic




Example: Diagonally moving robot

Example

States: Locations
Transitions: Moves




Example: Diagonally moving robot

Example

S=7Zx17Z

(x,y) > (x£1l,y+1)

Non-deterministic




Example: Diagonally moving robot

Example

S=ZXZ

A = {NW, NE,SW, SE}
(x,y) W (x =1,y + 1)
(x,y) 25 (x + 1,y +1)
(xy) 25 (x— 1,y —1)
(x,y)S—E>(X—i-1,y—1)

Deterministic




Example: Die Hard jug problem

Example
Given jugs of 3L and 5L, measure out exactly 4L.

@ States: Defined by amount of water in each jug
@ Start state: No water in both jugs
@ Transitions: Pouring water (in, out, jug-to-jug)




Example: Die Hard jug problem

Example
Given jugs of 3L and 5L, measure out exactly 4L.

o S={(i,j)eNxN:0<i<5and 0<, <3}
°50:(070)
@ — given by




Example: Die Hard jug problem

Example
Given jugs of 3L and 5L, measure out exactly 4L.

e S={(i,j)ENxN:0</i<5and0<, <3}
e s =(0,0)
@ — given by

o (i,j) = (0,)) [empty 5L jug]
o (i,j)—(i,0) [empty 3L jug]




Example: Die Hard jug problem

Example
Given jugs of 3L and 5L, measure out exactly 4L.

e S={(i,j)ENxN:0</i<5and0<, <3}
e s =(0,0)
@ — given by

o (i,j) = (5,)) [fill 5L jug]
o (i,j) — (i,3) [fill 3L jug]




Example: Die Hard jug problem

Example
Given jugs of 3L and 5L, measure out exactly 4L.

e S={(i,j)ENxN:0</i<5and0<, <3}
e sp=(0,0)
@ — given by

o (i,j)—= (i+4,0)ifi+j<5 [empty 3L jug into 5L jug]
o (i,j)—=(0,i+j)ifi+j<3 [empty 5L jug into 3L jug]




Example: Die Hard jug problem

Example
Given jugs of 3L and 5L, measure out exactly 4L.

e S={(i,j)ENxN:0</i<5and0<, <3}
e sp=(0,0)
@ — given by

(ij)— (5,j—5+i)ifi+j>5  [fill 5L jug from 3L jug]
(i, j))=(—3443)ifi+;>3 [fill 3L jug from 5L jug]




Example: Die Hard jug problem

Example
Given jugs of 3L and 5L, measure out exactly 4L.

o S={(i,j))eNxN:0<i<5and0< <3}

@ 50 = (an)
@ — given by

o (i,j) = (0,)) [empty 5L jug]

o (i,j) = (i,0) [empty 3L jug]

o (i,j) = (5.J) [fill 5L jug]

o (i,j) — (i,3) [fill 3L jug]

o (i,j)—= (i+4,0)if i+ <5 [empty 3L jug into 5L jug]

o (i,j)—=(0,i+j)ifi+j<3 [empty 5L jug into 3L jug]

o (i,j)—=(5,j—5+1i)ifi+j>5 [fill 5L jug from 3L jug]

o (i,j)—(i—3+4+,,3)ifi+j>3 [fill 3L jug from 5L jug]




Runs and reachability

Given a transition system (S,—) and states s,s' € S,

@ a run from s is a (possibly infinite) sequence si, sy,
that s = s; and s; — s for all i > 1.

... such



Runs and reachability

Given a transition system (S,—) and states s,s' € S,

@ a run from s is a (possibly infinite) sequence s1, s, ... such
that s = s; and s; — s for all i > 1.

@ we say s’ is reachable from s, written s —* &, if (s,5') is in
the transitive closure of —.

NB

s’ is reachable from s if there is a run from s which contains s'.

)




Safety and Liveness

Common problem (Safety)

Will a transition system always avoid a particular state or states?
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Safety and Liveness

Common problem (Safety)

Will a transition system always avoid a particular state or states?
Equivalently, can a transition system reach a particular state or
states?

Common problem (Liveness)

Will a transition system always reach a particular state or states?
Equivalently, can a transition system avoid a particular state or
states?




Reachability example: Die Hard jug problem

Example
Given jugs of 3L and 5L, measure out exactly 4L.

@ States: S={(/,j)) e NxN:0<i<b5and0<,<3}
@ Transition relation: (i,/) — (0,J) etc.

Is (4,0) reachable from (0,0)?




Reachability example: Die Hard jug problem

Example
Given jugs of 3L and 5L, measure out exactly 4L.

@ States: S={(/,j)) e NxN:0<i<b5and0<,<3}
@ Transition relation: (i,/) — (0,J) etc.

Is (4,0) reachable from (0,0)?

Yes:
(0,00 — (0,3) — (3,0)
+
(0,1) « (5,1) « (3,3

0
(1,00 = (1,3) — (4,0)




Safety example: Diagonally moving robot

Example

Starting at (0,0)

Can the robot get to (0,1)?
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Safety example: Diagonally moving robot

Starting at (0,0)

Can the robot get to (0,1)?




Example

Safety example: Diagonally moving robot

Starting at (0,0)

Can the robot get to (0,1)? No




Example

Safety example: Diagonally moving robot

Starting at (0,0)

Can the robot get to (0,1)? No

isBlue((m, n)) := 2|(m + n)




Safety example: Diagonally moving robot

Example

Starting at (0,0)
Can the robot get to (0,1)? No
isBlue((m, n)) := 2|(m + n)

if isBlue(s) and s — &’
then isBlue(s’)




Safety example: Diagonally moving robot

Example

Starting at (0,0)

Can the robot get to (0,1)? No
isBlue((m, n)) := 2|(m + n)

if isBlue(s) and s — &’
then isBlue(s’)

isBlue((0,0)) and —isBlue((0,1))
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The invariant principle

A preserved invariant of a transition system is a unary predicate
¢ on states such that if ¢(s) holds and s — s’ then ¢(s’) holds.
Invariant principle

If a preserved invariant holds at a state s, then it holds for all
states reachable from s.




The invariant principle

A preserved invariant of a transition system is a unary predicate
¢ on states such that if ¢(s) holds and s — s’ then ¢(s’) holds.
Invariant principle

If a preserved invariant holds at a state s, then it holds for all
states reachable from s.

Proof:



Invariant example: Modified Die Hard problem

Example

Given jugs of 3L and 6L, measure out exactly 4L.

o States: S={(i,j) e NxN :0<i<6and 0<, <3}
@ Transition relation: (i,j) — (0,;) etc.
Is (4,0) reachable from (0,0)?




Invariant example: Modified Die Hard problem

Example
Given jugs of 3L and 6L, measure out exactly 4L.

o States: S={(i,j) e NxN :0<i<6and 0<, <3}
@ Transition relation: (i,j) — (0,;) etc.

Is (4,0) reachable from (0,0)?
No. Consider ¢((7,/)) = (3]7) A (3)).
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Partial correctness

Let (S, —, s0, F) be a transition system with start state sp and
final states F and a ¢ be a unary predicate on S. We say the
system is partially correct for ¢ if ©(s’) holds for all states s’ € F
that are reachable from sp.

NB

Partial correctness does not guarantee a transition system will
reach a final state.




Partial correctness example: Fast exponentiation

Example
Consider the following program in L:

X :=m;
y:i=n;
r.=1;
while y > 0 do
if 2|y then
yi=y/2
else
y=(y-1/2
ri=r*x
fi;
X = X * X

od




Partial correctness example: Fast exponentiation
Example

@ States: Functions from {m,n,x,y,r} to N
@ Transitions: Effect of each line of code:




Partial correctness example: Fast exponentiation
Example

@ States: (x,y,r) e Nx Nx N
@ Transitions: Effect of each line of code:




Partial correctness example: Fast exponentiation

Example

@ States: (x,y,r) e Nx Nx N

@ Transitions: Effect of each iteration of while loop:
o (x,y,r) = (x%,y/2,r) if y is even
o (x,y,r) = (X%, (y —1)/2,x) if y is odd




Partial correctness example: Fast exponentiation

Example

@ States: (x,y,r) e Nx Nx N

@ Transitions: Effect of each iteration of while loop:
o (x,y,r) = (x%,y/2,r) if y is even
o (x,y,r) = (x% (y —1)/2,rx) if y is odd

@ Start state: (m,n, 1)




Partial correctness example: Fast exponentiation

Example

@ States: (x,y,r) e Nx Nx N

@ Transitions: Effect of each iteration of while loop:
o (x,y,r) = (x%,y/2,r) if y is even
o (x,y,r) = (x>, (y —1)/2,rx) if y is odd

@ Start state: (m,n, 1)
o Final states: {(x,0,r) : x,r € N}




Partial correctness example: Fast exponentiation

Example

@ States: (x,y,r) e Nx Nx N

@ Transitions: Effect of each iteration of while loop:
o (x,y,r) = (x%,y/2,r) if y is even
o (x,y,r) = (x>, (y —1)/2,rx) if y is odd

o Start state: (m,n, 1)
o Final states: {(x,0,r) : x,r € N}

Goal: Show partial correctness for o((x,y,r)) := (r = m")




Partial correctness example: Fast exponentiation

Example

@ States: (x,y,r) e NxNxN

@ Transitions: Effect of each iteration of while loop:
o (x,y,r) = (x%,y/2,r) if y is even
o (x,y,r) = (x>, (y —1)/2,rx) if y is odd

o Start state: (m,n, 1)
o Final states: {(x,0,r) : x,r € N}

Goal: Show partial correctness for o((x,y,r)) := (r = m")

Show ¥((x, y,r)) := (rx¥ = m") is a preserved invariant...




Partial correctness example: Fast exponentiation

Example

@ States: (x,y,r) e NxNxN

@ Transitions: Effect of each iteration of while loop:
o (x,y,r) = (x%,y/2,r) if y is even
o (x,y,r) = (x>, (y —1)/2,rx) if y is odd

o Start state: (m,n, 1)
o Final states: {(x,0,r) : x,r € N}
Goal: Show partial correctness for o((x,y,r)) := (r = m")

Show ¥((x, y,r)) := (rx¥ = m") is a preserved invariant...

How can we show total correctness?




Total correctness

A transition system (S, —) terminates from a state s € S if there
is an N € N such that all runs from s have length at most N.

A transition system is totally correct for a unary predicate ¢, if
it terminates (from sp) and ¢ holds in the last state of every run.



Derived variables

In a transition system (S, —), a derived variable is a function
f:5S—R.

A derived variable is strictly decreasing if s — s’ implies
f(s') < f(s).



Derived variables

In a transition system (S, —), a derived variable is a function
f:5S—R.

A derived variable is strictly decreasing if s — s’ implies
f(s') < f(s).

Theorem

If f is an N-valued, strictly decreasing derived variable, then the
length of any run from s is at most f(s).




Termination example: Fast exponentiation

Example

@ States: (x,y,r) e Nx Nx N

@ Transitions: Effect of each iteration of while loop:
o (x,y,r) = (x%,y/2,r) if y is even
o (x,y,r) = (X% (y —1)/2,x) if y is odd

Derived variable:




Termination example: Fast exponentiation

Example

@ States: (x,y,r) e Nx Nx N

@ Transitions: Effect of each iteration of while loop:
o (x,y,r) = (x%,y/2,r) if y is even
o (x,y,r) = (X% (y —1)/2,x) if y is odd

Derived variable: f((x,y,r)) =y
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Interaction with the environment

We can model the system interacting with an external entity via
inputs (X) and outputs (I') by using labelled transitions:
—CSXxAxSwhere A\=2L xT

Two main categories of input/output transition systems:
Acceptors: Accept/reject a sequence of inputs

Transducers: Take a sequence of inputs and produce a sequence
of outputs



Interaction with the environment

We can model the system interacting with an external entity via
inputs (X) and outputs (I') by using labelled transitions:
—CSXxAxSwhere A\=2L xT

Two main categories of input/output transition systems:
Acceptors: Accept/reject a sequence of inputs (Relations)

Transducers: Take a sequence of inputs and produce a sequence
of outputs (Functions)



Acceptor example: Diagonally moving robot
Example
S=ZXZ
so = (0,0)

(6, y) 2 (x — 1,y +1)
(,y) 25 (x+ 1,y +1)
(
(

%) s (x =1,y —1)

x,y) 5 (x+1,y —1)

Accept if (2,2) reached




Acceptor example: Diagonally moving robot

Example

S=ZXZ

so = (0,0)

(6y) 2 (x =1,y +1)
(,9) 25 (x+ 1,y +1)
(6,9) 25 (x =Ly —1)
(x,y) o, (x+1,y—1)
Accept if (2,2) reached

Accepted sequences:
NE, NE




Acceptor example: Diagonally moving robot
Example
S=ZXZ
so = (0,0)

(6, y) 2 (x — 1,y +1)
(,y) 25 (x+ 1,y +1)
(x,y) 2% (x =1y = 1)
(x,y)i(x—i—l,y—l)

Accept if (2,2) reached

Accepted sequences:
NE, NE
NE,SE, NE, NW




Acceptor example: Diagonally moving robot
Example
S=7ZXx1Z
so = (0,0)

(6, y) 2 (x — 1,y +1)
(,y) 25 (x+ 1,y +1)
(x,y) 2% (x =1y = 1)
(x,y)s—E>(x+1,y—1)

Accept if (2,2) reached

Accepted sequences:
NE, NE

NE,SE, NE, NW
NE, NE, NE,SW ...




Transducer example: Diagonally moving robot

Example
S=7Zx17

S0 = (0, 0)

(x,y) 22 (x =1,y + 1)

(%,y) 25 (x+1,y + 1)
SW /x

(x,¥)

— (x—=-1,y-1)
SE/x
(%, y) 255 (x+ 1,y — 1)

Input direction
Output x-coordinate




Transducer example: Diagonally moving robot

Example

S=7ZXx17Z

S0 = (0,0)

(x,y) 22 (x =1,y + 1)

(%, y) 225 (x+ 1,y + 1)
sw/

<x,y)-E/—X+(x—1 y—1)
(x,y) — (x+ 1,y = 1)
Input direction

Output x-coordinate

Input: NE,SE, NE, NW
Output: 1,2,3,2




Transducer example: Diagonally moving robot
Example

S=7ZX1Z

so = (0 0)

(x,y) 2L, (x =1,y +1)
(oy) =% /(x+1y+1>
(x,y) 2 (x —1,y — 1)
(x,y)—/>(x+1,y—1)

Input direction
Output y-coordinate

Input: NE, SE, NE, N\W
Output: 1,0,1,2




Acceptor example: Die Hard jug problem

Example
© S={(i,j)ENxN:0<i<5and0<j<3}
o 50:(0,0)

@ — given by

o (i,j) —(0,)) [empty 5L jug]
o (i.j) = (i,0) [empty 3L jug]
o (i,j) = (5,)) [fill 5L jug]
o (i,j) 2 (i,3) [fill 3L jug]
o (i,j) = (i+4,0)ifi+j<5  [empty 3L jug into 5L jug]
o (i,)) E53, (0,i4+j)ifi+j<3 [empty 5L jug into 3L jug]
o (i,)) B3, (5,j—5+1i))ifi+j>5 [fill 5L jug from 3L jug]
o (i) 2% (i—3+4,3)ifi+j>3 [fill 3L jug from 5L jug]

@ Accept if (4,0) is reached:




Acceptor example: Die Hard jug problem

Example
© S={(i,j)ENxN:0<i<5and0<j<3}
o 50:(0,0)

@ — given by

o (i,j) —(0,)) [empty 5L jug]
o (i.j) = (i,0) [empty 3L jug]
o (i,j) = (5,)) [fill 5L jug]
o (i,j) 2 (i,3) [fill 3L jug]
o (i,j) = (i+4,0)ifi+j<5  [empty 3L jug into 5L jug]
o (i,)) E53, (0,i4+j)ifi+j<3 [empty 5L jug into 3L jug]
o (i,)) B3, (5,j—5+1i))ifi+j>5 [fill 5L jug from 3L jug]
o (i) 2% (i—3+4,3)ifi+j>3 [fill 3L jug from 5L jug]

@ Accept if (4,0) is reached: e.g. F3, E35, F3, F53, E5, E35, F3, E35




e-transitions

It can be useful to allow the system to transition without taking
input or producing output. We use the special symbol € to denote
such transitions.



Formal definitions

An acceptor is a ¥ U {e}-labelled transition system
A= (S,—, X, s, F) with a start state sp € S and a set of final
states F C S.

A transducer is a (X U {e}) x (I' U {€})-labelled transition system
T =(S,—,X, s, F) with a start state sp € S and a set of final
states F C S.
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Finite state transition systems

State transition systems with a finite set of states are particularly
useful in Computer Science.

Acceptors: Finite state automata

Transducers: Mealy machines



