THE UNIVERSITY OF NEW SOUTH WALES

SEMESTER 2 2017

COMP6741: PARAMETERIZED AND EXACT COMPUTATION - Trial Exam

- 1. TIME ALLOWED 3 hours.
- 2. READING TIME 10 minutes.
- 3. THIS EXAMINATION PAPER HAS 4 PAGES.
- 4. TOTAL NUMBER OF QUESTIONS 7.
- 5. TOTAL MARKS AVAILABLE 100.
- 6. THE QUESTIONS ARE NOT ALL OF EQUAL VALUE. MARKS AVAILABLE FOR EACH QUESTION ARE SHOWN IN THE EXAMINATION PAPER.
- 7. ALL ANSWERS MUST BE WRITTEN IN INK. EXCEPT WHERE THEY ARE EXPRESSLY REQUIRED, PENCILS MAY BE USED ONLY FOR DRAWING, SKETCHING OR GRAPHI-CAL WORK.
- 8. THIS PAPER MAY BE RETAINED BY THE CANDIDATE.

SPECIAL INSTRUCTIONS

- 9. ANSWER ALL THE QUESTIONS.
- 10. CANDIDATES MAY BRING TO THE EXAMINATION: printed lecture notes, textbooks, handwritten and printed notes, UNSW approved calculator (but no other electronic devices).
- 11. THE FOLLOWING MATERIALS WILL BE PROVIDED: answer booklet.

Your answers may rely on theorems, lemmas and results stated in the lecture notes and exercise sheets of this course.

Kernel Lower Bound 1

Recall that a *clique* in a graph G = (V, E) is a subset of vertices $S \subseteq V$ such that every two vertices from S are adjacent in G. Consider the NP-complete GENERALIZED EDGE CLIQUE COVER problem.

GENERALIZED EDGE CLIQUE COVER (GECC) A graph G = (V, E), a subset of edges $R \subseteq E$, and an integer $k \leq |V|$ Input: Parameter: Question: Is there a set \mathcal{C} of at most k cliques in G such that each $e \in R$ is contained in at least one of these cliques?

• Prove that GENERALIZED EDGE CLIQUE COVER has no polynomial kernel unless coNP \subset NP/poly.

2 ETH Lower Bound

A triangle in a graph is a clique of size 3, i.e., a set of 3 pairwise adjacent vertices. A triangle transversal in a graph G = (V, E) is a subset of vertices $S \subseteq V$ such that G - S has no triangle as a subgraph.

TRIANGLE TRANSVERSAL (TT)		
Input:	A graph $G = (V, E)$ and an integer k	
Parameter:	k	
Question:	Does G have a triangle transversal of size at most k ?	

• Show that TRIANGLE TRANSVERSAL has no $2^{o(|V|)}$ time algorithm if the Exponential Time Hypothesis is true.

3 Treewidth

Consider the following two graph operations:

- (i) Choose a vertex v in the graph, and add a new vertex that is adjacent only to v.
- (ii) Choose an edge uv in the graph, remove the edge uv, and add a new vertex that is adjacent to uand to v.

Let G be a graph with treewidth at least 2. Let H be a graph obtained from G by a sequence of operations (i) and (ii).

• Show that the treewidth of H is at most the treewidth of G.

[10 marks]

[10 marks]

[10 marks]

4 Weighted Cycle Vertex Deletion

Consider the WEIGHTED CYCLE VERTEX DELETION problem. A cycle is a 2-regular connected graph.

 $\begin{array}{ll} \text{Weighted Cycle Vertex Deletion} \\ \text{Input:} & \text{Graph } G = (V, E), \text{ a weight function } \omega : V \to \mathbb{N}^+ \text{ assigning an integer } \omega(v) \geq 1 \text{ to} \\ & \text{every vertex } v \in V, \text{ and an integer } k \\ \text{Parameter:} & k \\ \text{Question:} & \text{Is there a set } S \subseteq V \text{ with weight } \sum_{v \in S} \omega(v) \text{ at most } k \text{ such that } G - S \text{ is a cycle}? \end{array}$

- 1. Design simplification rules that transform (G, ω, k) into an equivalent instance (G', ω', k') such that
 - (a) G' has no vertex of degree at most 1, and
 - (b) G' has no degree-2 vertex with a neighbor of degree 2.
- 2. Show that a graph with minimum degree at least 2 and no two adjacent vertices of degree 2 has average degree at least 2.4. [10 marks]
- 3. Show that there is a (possibly randomized) algorithm for WEIGHTED CYCLE VERTEX DELETION with running time $O^*(c^k)$ for some constant c > 1. [10 marks]

5 Feedback Vertex Set parameterized by vertex cover

[10 marks]

[5 marks]

[5 marks]

Consider the following parameterization of the FEEDBACK VERTEX SET problem.

vc-Feedback Vertex Set (vc-FVS)	
Input:	A graph $G = (V, E)$, an integer k, and a vertex cover C of G
Parameter:	C
Question:	Does G have a feedback vertex set of size at most k ?

• Show that vc-FEEDBACK VERTEX SET is fixed-parameter tractable.

6 W[1]-hardness

[10 marks]

We denote by $G = (A \uplus B, E)$ a *bipartite graph* whose vertex set is partitioned into two independent sets A and B. Consider the HALL SET problem, which asks for a subset S of at most k vertices in A whose neighborhood in B is smaller than S.

HALL SET (HS)		
Input:	A bipartite graph $G = (A \uplus B, E)$ and an integer k	
Parameter:	k	
Question:	Is there a set $S \subseteq A$ of size at most k such that $ N(S) < S $?	

• Show that HALL SET is W[1]-hard.

Hints: Reduce from CLIQUE. For a set E' of edges, the set $V(E') = \{u \in e : e \in E'\}$ denotes the set of endpoints of E'. Observe that for a set E' of $\binom{k}{2}$ edges, we have that $|V(E')| \leq k$ if and only if V(E') is a clique of size k.

7 Local-Search-3-Sat

Consider the LOCAL-SEARCH-3-SAT problem.

Local-Search-3-Sat (LS-3-Sat)		
Input:	A CNF formula F where each clause contains at most 3 literals, an assignment	
	$\alpha : \operatorname{var}(F) \to \{0, 1\}, \text{ and an integer } k$	
Parameter:	k	
Question:	Is there an assignment $\beta : var(F) \to \{0, 1\}$ that differs with α on at most k variables	
	and that satisfies F ?	

- 1. Give a CNF formula F on 3 variables and an assignment α such that $(F, \alpha, 2)$ is a No-instance but $(F, \alpha, 3)$ is a YES-instance. [5 marks]
- 2. Design an $O^*(3^k)$ time algorithm for LOCAL-SEARCH-3-SAT. [10 marks]
- 3. Based on that algorithm, show that 3-SAT can be solved in $O^*(3^{n/2}) \subseteq O^*(1.7321^n)$ time, where $n = |\mathsf{var}(F)|$. [5 marks]