GSOE9210 Engineering Decisions

Problem Set 05

1. Consider the river problem described in lectures:

$$
\begin{array}{c|cccc}
& p & 1-p & \\
& f & \bar{f} & & V_{B} \\
\hline \mathrm{~A} & 4 & 0 & & 4 p \\
\mathrm{~B} & 3 & 1 & & 2 p+1
\end{array}
$$

(a) For $p=\frac{3}{4}$, what is the slope of the Bayes indifference line through A ?
(b) Draw the Bayes indifference curves for $p=\frac{1}{4}$ and $\frac{3}{4}$ through A and B.
(c) Draw the Bayes indifference curve for which an agent would be indifferent between A and B , respectively. What is the slope of the line?
(d) For which probability (i.e., value of p) would an agent be indifferent between A and B under the Bayes decision rule?
(e) What is the Bayes value associated with the indifference curve through A and B ?
(f) For which values of p would an agent prefer A to B?

Solution

(a) The indifference curves are given by the points $\left(v_{1}, v_{2}\right)$ which, for fixed $u \in \mathbb{R}$, satisfy:

$$
p v_{1}+(1-p) v_{2}=u
$$

In gradient-intercept form, $v_{2}=\frac{u}{1-p}-\frac{p}{1-p} v_{1}$, where $m=-\frac{p}{1-p}$; e.g., for $p=\frac{3}{4}, m=-\frac{3}{4} / \frac{1}{4}=-\frac{3}{1}$.
(b)

(c)

The line $A B$ places A and B on the same indifference curve. The slope of the line is given by:

$$
\begin{aligned}
m_{\mathrm{AB}} & =\frac{3-4}{1-0} \\
& =-1
\end{aligned}
$$

(d) We saw above that $m_{\mathrm{AB}}=-\frac{p}{1-p}$; i.e., $-\frac{p}{1-p}=-1$. Hence $p=1-p$; i.e., $2 p=1$. Therefore $p=\frac{1}{2}$.

Alternatively, $p=\frac{\Delta y}{\Delta x+\Delta y}=\frac{1}{1+1}=\frac{1}{2}$.
Alternatively, where m is the gradient of the line, $p=\frac{m}{m-1}=\frac{-1}{-1-1}=$ $\frac{-1}{-2}=\frac{1}{2}$.
(e) Because the indifference line AB goes through A (and B), we can associate with it the Bayes value of A ; i.e., $u_{\mathrm{A}}=V_{B}(\mathrm{~A})=4 p=$ $4 \times \frac{1}{2}=2$.
(f) From the graph, for values $p>\frac{1}{2}$, the slope is steeper $(m<-1)$ than that of line AB , and hence B is below the indifference line through A; i.e., A would be preferred to B.
Alternatively, analytically:

$$
\begin{aligned}
V_{B}(\mathrm{~A})>V_{B}(\mathrm{~B}) & \text { iff } 4 p>2 p+1 \\
& \text { iff } 2 p>1 \\
& \text { iff } p>\frac{1}{2}
\end{aligned}
$$

2. Repeat the above exercises for regret. What can you infer about the Bayes decision rule when applied to the original values versus regrets?

Solution

The regrets - in regret space - are shown in the graph below.
Since we want to minimise regret under the miniMax Regret rule, lower-left (regret) indifference lines are preferred (i.e., correspond to lower-more preferred-Bayes regret values).

The Bayes regret value for a strategy A is given by the Bayes value of A-written $V_{B R}(\mathrm{~A})$-with A situated in regret space.
Bayes regrets are calculated in the same way, using regrets instead of the original values.
Indifference lines for given p are obtained by fixing the Bayes regret value:

$$
p r_{1}+(1-p) r_{2}=u
$$

A is at $(0,1)$ in regret space. The Bayes value along the indifference line through A for $p=\frac{3}{4}$ is given by setting $r_{1}=0, r_{2}=1$ in the expression for $V_{B R}(\mathrm{~A})$ above:

$$
u_{\mathrm{A}}=(1-p)=\left(1-\frac{3}{4}\right)=\frac{1}{4}
$$

B is at $(1,0)$, so for $p=\frac{1}{4}$, the Bayes value of the indifference line through B is given by $u_{\mathrm{B}}=p=\frac{1}{4}$.
AB has slope $m=-1$, hence it corresponds to $p=\frac{1}{2}$. Moreover, $V_{B R}(\mathrm{~B})=$ $u_{\mathrm{B}}=p=1-p=\frac{1}{2}$.
When considering regret, strategy A is preferred to B when its Bayes regret value is lesser, which is the case for probabilities that produce lines steeper than gradient $-1(m<-1)$; i.e., $V_{B R}(\mathrm{~A})<V_{B R}(\mathrm{~B})$ iff $m<-1$; i.e., $p>1-p$ iff $p>\frac{1}{2}$.

Note that as comparison of Bayes values and Bayes regret values, $V_{B}(\mathrm{~A})$ and $V_{B R}(\mathrm{~B})$, depend, in both cases, only on the slope of their indifference curves. It follows that the Bayes decision rule is invariant under original values and regrets; i.e., $V_{B}(\mathrm{~A})>V_{B}(\mathrm{~B})$ iff $V_{B R}(\mathrm{~A})<V_{B R}(\mathrm{~B})$. That is, A is preferred to B under the Bayes decision rule for the original values if an only if it is also preferred under the Bayes decision rule for regrets.
3. Consider the generic two-strategy problem below:

	p	$1-p$
	s_{1}	s_{2}
A	a_{1}	a_{2}
B	b_{1}	b_{2}

Assume neither strategy dominates the other.
(a) Prove that an agent will be indifferent between A and B under Bayes when:

$$
p=\frac{\Delta y}{\Delta x+\Delta y}
$$

where

$$
\begin{aligned}
\Delta y & =\left|a_{2}-b_{2}\right| \\
\Delta x & =\left|a_{1}-b_{1}\right|
\end{aligned}
$$

(b) Prove that:

$$
p=\frac{m}{m-1}
$$

where $m=-\frac{\Delta y}{\Delta x}$ is the slope of the line joining A and B in the Cartesian plane.

Solution

(a) If neither strategy is dominated then $\left(b_{2}-a_{2}\right)\left(b_{1}-a_{1}\right)<0$; i.e., $b_{2}-a_{2}<0$ iff $b_{1}-a_{1}>0$.

$$
\begin{aligned}
& V_{B}(\mathrm{~A})=p a_{1}+(1-p) a_{2} \\
& V_{B}(\mathrm{~B})=p b_{1}+(1-p) b_{2}
\end{aligned}
$$

Setting $V_{B}(\mathrm{~A})=V_{B}(\mathrm{~B})$:

$$
\begin{aligned}
p a_{1}+(1-p) a_{2} & =p b_{1}+(1-p) b_{2} \\
p\left(a_{1}-a_{2}\right)+a_{2} & =p\left(b_{1}-b_{2}\right)+b_{2} \\
p\left(a_{1}-b_{1}+b_{2}-a_{2}\right) & =b_{2}-a_{2} \\
p & =\frac{b_{2}-a_{2}}{\left(a_{1}-b_{1}\right)+\left(a_{2}-b_{2}\right)} \\
& =\frac{\Delta y}{\Delta x+\Delta y}
\end{aligned}
$$

(b) From lectures:

$$
\begin{aligned}
\frac{p}{1-p} & =-m \\
p & =m p-m \\
m & =p(m-1) \\
\therefore p & =\frac{m}{m-1}
\end{aligned}
$$

4. Consider the decision table below, with $P\left(s_{1}\right)=p$:

	p	$1-p$
	s_{1}	s_{2}
A	5	3
B	4	1
C	2	5

(a) For which value of p would the agent be indifferent between A and C?
(b) Plot the Bayes values for the strategies as p varies from 0 to 1 .
(c) For which values of p are A, B, and C preferred, respectively, under the Bayes decision rule?

Solution

(a) Slope of AC: $m=\frac{5-3}{2-5}=-\frac{2}{3}$.

Hence:

$$
\begin{aligned}
\frac{p}{1-p} & =\frac{2}{3} \\
3 p & =2-2 p \\
5 p & =2 \\
\therefore p & =\frac{2}{5}
\end{aligned}
$$

Hence for $p<\frac{2}{5}$, C is preferred. For $p>\frac{2}{5}$, A is preferred.
Note that B is (strongly) dominated, hence is not admissible, and therefore is never preferred.
(b) Consider the plot of the Bayes values of the strategies against p :

(c) From the graph it is clear that for $0<p<\frac{2}{5}$, C is preferred. For $\frac{2}{5}<p<1, \mathrm{~A}$ is preferred.
5. Each day, a drinks vendor must purchase stock of several types of drink to sell in her shop. The types of drink which may be stocked are: a) hot chocolate; b) iced tea; c) lemonade; d) orange juice.
She knows, from past experience, that on warm (w) days she'll make sales totalling $\$ 10$ on hot chocolate, $\$ 40$ on iced tea, $\$ 30$ on lemonade, and $\$ 40$ on orange juice. On cool (c) days, however, her sales total is $\$ 30$ on hot chocolate, $\$ 0$ on iced tea, $\$ 20$ on lemonade, and $\$ 10$ on orange juice.
Assume days are either warm or cool, but she will not know which before she must order her stock.
(a) Produce a decision table for this problem.
(b) What proportion of drinks should she stock to maximise her guaranteed (i.e., minimum) sales total regardless of the temperature?
(c) Find the Bayes strategies for $p=0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$.
(d) What is the least favourable probability distribution on warm and cool (not warm) days?
(e) Repeat the above analysis for the miniMax Regret rule.
(f) Define the admissibility frontier for this problem.

Solution

(a) Consider the decision table below, with $P\left(s_{1}\right)=p$. Values are expressed in tens of dollars. The associated graph is also shown.

	w	c
HC	1	3
IT	4	0
Le	3	2
OJ	4	1

where: w warm day
c cold day

(b) She would maximise her guaranteed sales by having the mixture of stock which maximises the minimum sales irrespective of whether the day is warm or cold.
It is clear from the graph that the optimal mixture should comprise hot chocolate and lemonade only.
Let m_{w} be the average sales of the relevant mixture of drinks on a warm day and m_{c} the mixture's average sales on a cool day.
If μ is the desired proportion of hot chocolate in the mixture, then

$$
\begin{array}{r}
M=\left(m_{w}, m_{c}\right)=(3,2)+\mu[(1,3)-(3,2)] ; \text { i.e., } \\
m_{w}=3+(1-3) \mu=3-2 \mu \\
m_{c}=2+(3-2) \mu=2+\mu
\end{array}
$$

Setting $m_{w}=m_{c}$ to find the Maximin mixed strategy:

$$
\begin{aligned}
3-2 \mu & =2+\mu \\
1 & =3 \mu \\
\therefore \mu & =\frac{1}{3}
\end{aligned}
$$

That is, she should have a mixture consisting of one third of the units on sale being hot chocolate and the other two thirds lemonade. That is, a ratio of two units of lemonade per unit of hot chocolate.
(c) Consider the plot of the Bayes values of the strategies against p :

From the graph:

p	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	1
Bayes strategy	HC	HC	Le \& OJ	OJ	IT \& OJ

For probabilities for which multiple pure strategies are Bayes strategies, mixtures of those strategies involved would also be Bayes strategies; e.g., for $p=\frac{1}{2}$, any mixture of Le and OJ would also be a Bayes strategy.
(d) The least favourable probability distribution is the one that minimises the value of the Bayes strategies, and corresponds to the probability associated with the indifference curve on which the Maximin strategy lies.
This is obtained from the slope of the segment on which M lies; i.e., the segment joining HC and Le. Since this slope is $m=-\frac{1}{2}$, the probability is $p=\frac{1}{1+2}=\frac{1}{3}$. This is verified by inspection of the above graph of the Bayes values against p.
(e) The maximum regret indifference curves are shown on the graph below (right). Since miniMax Regret seeks to minimise the maximum regret, preference is for curves to the lower left (instead of upper right, which would correspond to preference under Maximin).

				where:	w	warm day
	p	$1-p$			c	cold day
	w	c				
HC	3	0				
IT	0	3				
Le	1	1	7			
OJ	0	2				

Notice that the miniMax Regret mixed strategy is the pure strategy Le, and that this does not agree with the Maximin strategy - which is a mixture of HC and Le.
Consider the plot of the Bayes regret values of the strategies against p :

Notice that this graph resembles the other one but is inverted, and the values at $p=1$ have been shifted by 1 . Because of the similarity, the graphs of the lines for the strategies relative to each other are preserved, and hence the Bayes strategies remain unaffected for every value of p; i.e., Bayes strategies are invariant under regret.
This can also be seen from the graph in regret space; the strategies are rotated (double reflection) in the same relative positions relative to each other, so the slopes (i.e., probabilities) will still produce the same strategies under the Bayes decision rule when minimising Bayes regret rather than maximising the original Bayes values.
(f) Consider:

Notice that iced tea (IT) is weakly dominated by OJ, and hence is not on the admissible frontier; in fact, the entire set of non-degenerate
mixtures of IT with OJ (the segment joining IT and OJ, excluding OJ itself) are inadmissible.
When minimising regret, the admissibility frontier has the same shape, but is inverted (rotated).
6. Show that a strategy is admissible iff it is a Bayes strategy for some probability distribution.

Solution

Consider an arbitrary inadmissible strategy A; i.e., there exists some strategy B such that for each of A's payoffs, a_{i}, for the corresponding payoff b_{i} under B, we have $b_{i}>a_{i}$. For an arbitrary probability distribution, let p_{i} be the probability of payoffs a_{i} and b_{i}. It follows that:

$$
\begin{array}{llll}
b_{i}>a_{i} & \text { iff } & p_{i} b_{i}>p_{i} a_{i} \\
& \text { iff } & \sum_{i} p_{i} b_{i}>\sum_{i} p_{i} a_{i} \\
& \text { iff } & V_{B}(\mathrm{~B})>V_{B}(\mathrm{~A})
\end{array}
$$

Therefore, B will be preferred over A under the Bayes decision rule for any probability distribution, and hence A will not be a Bayes strategy.
Conversely, suppose A is admissible, then for any other strategy B, for some $i, a_{i} \geqslant b_{i}$. So for any probability distribution such that $p_{i}=1$ (i.e., $p_{j}=0$ for all $\left.j \neq i\right), V_{B}(\mathrm{~A})=\sum_{k} p_{k} a_{k}=p_{i} a_{i} \geqslant p_{i} b_{i}=\sum_{k} p_{k} b_{k}=V_{B}(\mathrm{~B})$. It follows that for some probability distribution, A is a Bayes strategy.
The two paragraphs above conclude the proof.
7. Show that a Maximin strategy is always a Bayes strategy for some probability distribution.

Solution

A proof sketch is outlined for the case of two states.
Let $\mathrm{M}=\left(m_{1}, m_{2}\right)$ be a Maximin strategy. (Does there always exist a Maximin strategy?) There are two cases to consider:a) M is a pure strategy; or b) M is a mixture.
If M is a pure strategy then there must be some state s_{i} in which $m_{i} \geqslant a_{i}$ for any other strategy A. In this case M is admissible, and hence, by the result above, a Bayes strategy for some probability distribution.
If M is a mixture then we saw that for the least favourable probability distribution P, M will receive a Bayes value no less than any admissible mixture. So M will be a Bayes strategy for P.
In both cases M is a Bayes strategy, which completes the proof.
8. Prove that for any two actions A and B, if A weakly dominates B, and all state probabilities are non-zero, then the Bayes decision rule will strictly prefer A over B.

Solution

Suppose A weakly dominates B; i.e., for all $i, a_{i} \geqslant b_{i}$ and for some j,
$a_{j}>b_{j}$. Since for all $i, p_{i}>0$, then it follows that for all $i, p_{i} a_{i} \geqslant p_{i} b_{i}$ and $p_{j} a_{j}>p_{j} b_{j}$. But then $V_{B}(\mathrm{~A})=\sum_{i} p_{i} a_{i}=\sum_{i \neq j} p_{i} a_{i}+p_{j} a_{j}>$ $\sum_{i \neq j} p_{i} b_{i}+p_{j} b_{j}=V_{B}(\mathrm{~B})$.

