

The Components of a Asynchronous Communication System (2/3)

At the communication source:

- The parallel interface transfers data from the source to the transmit data buffer.
- These data are shifted into the parallel in/serial out shift register and T_{clock} shifts the data out to the receiver.

Design Considerations of the Serial Communication System

- How are data to be encoded?
- If the data are sent in serial, which bit is set first?
- How the receiver synchronised with the transmitter?
- What is the data rate?
- How are the electrical signals for logic values defined?
- How does the system provide for handshaking?

Data Terminal Equipment and Data Communication Equipment (1/2)

- The blocks labelled "Interface" in Figure 1 are, in practice, modems, and the two-wire half-duplex line is a telephone line.
- Modems are called data communication equipment (DCE).
- The terminals or the computers to which modems are attached to are called data terminal equipment (DTE).
- A modem is a modulator/demodulator.
 - □ It converts logic levels into tones to be sent over a telephone line.
 - □ At the other end of the telephone line, a demodulator converts the tones back to logic levels.
 - □ In a half-duplex system, a single set of tones are defined, one for space and one for mark.

Data Term Commun	inal Equi	pment and Data quipment (2/2)
-	Ŭ	r used because modem have ex data transmission over a
	1	0 1 11 1
A full-duplex syste originate and answ	• 1	
originate and answ Originate and answer m	er modems, and	two sets of tones.
Originate and answer m Originate and answer m	er modems, and	two sets of tones. Is for Bell 212A Answer modem
originate and answ Originate and answer m	er modems, and	two sets of tones.
Originate and answer m Originate and answer m	er modems, and	two sets of tones. It for Bell 212A Answer modem
Originate and answer m Originate and answer m Originate modem Modulator tones	er modems, and odem tone definition Direction	two sets of tones. Is for Bell 212A Answer modem
Originate and answer m Originate and answer m Originate modem Modulator tones 1070 Hz — Space	er modems, and odem tone definition Direction	two sets of tones. It for Bell 212A Answer modem
Originate and answer m Originate and answer m Originate modem Modulator tones 1070 Hz — Space 1270 Hz — Mark	er modems, and odem tone definition Direction	two sets of tones. is for Bell 212A Answer modem Demodulator

DE9	DB25	Signal	Purpose
	1	PG	Protective ground: this is actually the shield in a shielded cable. It is designed to be connected to the equipment frame and may be connected to external grounds.
3	2	TxD	Transmitted data: Sourced by DTE and received by DCE. Data terminal equipment cannot send unless RTS, CTS, DSR and DTR are asserted.
2	3	RxD	Received data: Received by DTE, sourced by DCE.
7	4	RTS	Request to send: Sourced by DTE, received by DCE. RTS is asserted by the DTE when it wants to send data. The DCE responds by asserting CTS.

DE9	DB25	Signal	Purpose
8	5	CTS	Clear to send: Sourced by DCE, received by DTE. CTS must be asserted before the DTE can transmit data.
6	6	DSR	Data set ready: Sourced by DCE and received by DTE. Indicates that the DCE has made a connection on the telephone line and is ready to receive data from the terminal. The DTE must see this asserted before it can transmit data.
5	7	SG	Signal ground: Ground reference for this signal is separate from pin 1, protective ground.

DE9	DB25	Signal	Purpose
1	8	DCD	Data carrier detect: Sourced by DCE, received by DTE. Indicates that a DCE has detected the carrier on the telephone line. Originally it was used in half-duplex systems but can be used in full-duplex systems, too.
4	20	DTR	Data terminal ready: Sourced by DTE and received by DCE. Indicates that DTE is ready to send or receive data.
9	22	RI	Ring indicator: Sourced by DCE and received by DTE. Indicates that a ringing signal is detected.

RS-232-C Interconnections (1/5)

- When two serial ports are connected, the data rate, the number of data bits, whether parity is used, the type of parity, and the number of stop bits must be set properly and identically on each UART.
- Proper cables must be used. There are three kinds of cables from which to choose, depending on the types of devices to be interconnected.
 - $\Box \quad The full DTE DCE cable.$
 - $\Box \quad The DTE DTE null modem cable.$
 - $\Box \quad \text{The minimal DTE} \text{DCE cable.}$

	e Lengens	and Data R	accs
RS-423 line length	and data rate	RS-422 line length	and data rate
Line length (ft)	Data rate	Line length (ft)	Data rate
30	100 Kbits/s	40	10 Mbits/s
300	10 Kbits/s	400	1 Mbits/s
4000	1 Kbits/s	4000	100 Kbits/s
RS-485 line length	and data rate		
Line length (ft)	Data rate		
40	10 Mbits/s		
400	1 Mbits/		
4000	100 Kbits/s		

	Summa		ary of Standards		
Specification	RS-232-C	RS-423	RS-422	RS-485	
Receiver input	± 3 to ± 15 V	$\pm 200 \text{mV}$ to $\pm 12 \text{V}$	±200mV to	±200mV to	
voltage			±7V	-7 to +12V	
Driver output signal	± 5 to ± 15 V	± 3.6 to $\pm 6V$	± 2 to ± 5 V	± 1.5 to $\pm 5V$	
Maximum data rate	20 Kb/s	100 Kb/s	10 Mb/s	10 Mb/s	
Maximum cable	50 ft	4000 ft	4000 ft	4000 ft	
length					
Driver source	3-7 ΚΩ	$450 \Omega \min$	100 Ω	54Ω	
Impedance					
Receiver input resistance	3 ΚΩ	$4 \text{ K}\Omega \text{ min}$	$4 \text{ K} \Omega \min$	$12 \text{ K}\Omega$ minimum	
Mode	Singled-ended	Singled-ended	Differential	Differential	
Number of drivers and receivers	1 Driver	1 driver	1 Driver	32 Driver	
allowed on one line	1 Receivers	10 Receivers	10 Receivers	32 Receivers	

Clock Generation (3/3)

Signal description:

txclk: Transmitter clock (internal signal).

rxclk: Receiver base clock (internal signal).

xcki: Input from XCK pin (internal signal). Used for synchronous slave operation.

xcko: Clock output to XCK pin (internal signal). Used for synchronous master operation.

fosc: XTAL pin frequency (system clock).

Transmitter Flags and Interrupts (1/3)

- The USART Transmitter has two flags that indicate its state: USART Data Register Empty (UDRE) and Transmit Complete (TXC). Both flags can be used for generating interrupts.
- The Data Register Empty (UDRE) flag indicates whether the transmit buffer is ready to receive new data.
 - □ This bit is set when the transmit buffer is empty, and cleared when the transmit buffer contains data to be transmitted that has not yet been moved into the Shift Register. For compatibility with future devices, always write this bit to zero when writing the UCSRA Register.

- The Transmit Complete (TXC) flag bit is set to one when the entire frame in the Transmit Shift Register has been shifted out and there are no new data currently present in the transmit buffer.
- The TXC flag bit is automatically cleared when a transmit complete interrupt is executed, or it can be cleared by writing a one to its bit location.
 - □ The TXC flag is useful in half-duplex communication interfaces (like the RS-485 standard), where a transmitting application must enter Receive mode and free the communication bus immediately after completing the transmission.

The USART Receiver (2/3)

- The Receiver starts data reception when it detects a valid start bit.
- Each bit that follows the start bit will be sampled at the baud rate or XCK clock, and shifted into the Receive Shift Register until the first stop bit of a frame is received.
- A second stop bit will be ignored by the Receiver.
- When the first stop bit is received, i.e., a complete serial frame is present in the Receive Shift Register, the contents of the Shift Register will be moved into the receive buffer. The receive buffer can then be read by reading the UDR I/O location.

Assembly C	ode Example:	
JSART_Rece	ive:	
Wait for	data to be received	
sbis UCSRA	, RXC	
jmp USART	_Receive	
Get and	return received data	from buffer
n r16, UD	2	
et		

Asynchronous Clock Recovery (3/3)

- Let sample 1 denote the first zero-sample as shown in the figure. The Clock Recovery logic then uses samples 8, 9 and 10 for Normal mode, and samples 4, 5 and 6 for Double Speed mode (indicated with sample numbers inside boxes on the figure), to decide if a valid start bit is received.
- If two or more of these three samples have logical high levels (the majority wins), the start bit is rejected as a noise spike and the Receiver starts looking for the next high to low-transition.
- If however, a valid start bit is detected, the clock recovery logic is synchronized and the data recovery can begin.
- The synchronization process is repeated for each start bit.

