
COMP1531COMP1531
8.3 Python Generators

ImportantImportant
informationinformation

ProjectProject
The end of the project is approaching....
Please make sure to read the spec where it
outlines individual expectations
My recent analysis suggests there are a significant
number who have or will not meet all the listed
criteria

The Global KeywordThe Global Keyword
Global is only necessary if you intend to assign to a
global variable
message = ["Hello", "I'm", "stored", "in", "a", "global", "variable"]

def example1():
 # Only reading from the variable; don't need global
 print(message)

def example2():
 # Modifying the list stored in the variable; don't need global.
 message[0] = "G'day"

def example3():
 # Calling a method on the object stored in the variable; don't need global
 message.append("mate")

def example4():
 # Assigning a new value to a variable; need global
 global message
 message = ["Good", "day", "sir", "I", "am", "a", "variable", "most", "global"]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

IteratorsIterators
Let us represent countable sets of values
The for loop in python works for any iterator
Example iterators:

class Squares:
 def __init__(self):
 self.i = 0

 def __iter__(self):
 return self

 def __next__(self):
 self.i += 1
 return self.i*self.i

1
2
3
4
5
6
7
8
9

10

class Fibonacci():
 def __init__(self):
 self.a = 0
 self.b = 1

 def __iter__(self):
 return self

 def __next__(self):
 c = self.a + self.b
 self.a = self.b
 self.b = c
 return self.a

1
2
3
4
5
6
7
8
9

10
11
12
13

GeneratorsGenerators
A different way of writing iterators
Defined via generator functions instead of classes
Example generator

def simple_generator():
 print("Hello")
 yield 1
 print("Nice to meet you")
 yield 2
 print("I am a generator")

1
2
3
4
5
6

GeneratorsGenerators
Intuitively, you can think of a generator as a
suspendable computation
Calling next() on a generator executes it until it
reaches a yield, at which point it is suspended (frozen)
until the subsequent call to next()

GeneratorsGenerators
More useful examples

def squares():
 i = 0
 while True:
 i += 1
 yield i*i

1
2
3
4
5

def fib():
 a = 0
 b = 1
 while True:
 c = a + b
 a = b
 b = c
 yield a

1
2
3
4
5
6
7
8

