
COMP1531COMP1531
7.1 - Software Engineering Design Principles

UpdatesUpdates

Lab06 due date extended to Tuesday 5th November
Help sessions will be added for Friday + multiple in
week 8 & 9

Design SmellsDesign Smells

Rigidity: Tendency to be too difficult to change
Fragility: Tendency for software to break when
single change is made
Immobility: Previous work is hard to reuse or move
Viscosity: Changes feel very slow to implement
Opacity: Difficult to understand
Needless complexity: Things done more complex
than they should be
Needless repetition: Lack of unified structures
Coupling: Interdependence between components

Design PrinciplesDesign Principles

Purpose is to make items:

Extensible
Reusable
Maintainable
Understandable
Testable

Often, this is achieved through abstraction.

Abstraction is the process of removing characteristics
of something to reduce it some a more high level

concept

DRYDRY
"Don't repeat yourself" (DRY) is about reducing

repetition in code. The same code/configuration
should ideally not be written in multiple places.

Why?

Takes up space with source code
Makes your code break when change is made

DRYDRY
How can we clean this up?

import sys

if len(sys.argv) != 2:
 sys.exit(1)

num = int(sys.argv[1])

if num == 2:
 for i in range(10, 20):
 result = i ** 2
 print("{i}**2 = {result}")

elif num == 3:
 for i in range(10, 20):
 result = i ** 3
 print("{i}**3 = {result}")

else:
 sys.exit(1)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

https://dbader.org/blog/python-first-class-functions

https://dbader.org/blog/python-first-class-functions

DRYDRY
How can we improve this?

import jwt

encoded_jwt = jwt.encode({'some': 'payload'}, 'applepineappleorange', algorithm='HS256')
print(jwt.decode(encoded_jwt, 'applepineappleorange', algorithms=['HS256']))

1
2
3
4

What about a config file?

DRYDRY
What do we think about this?

from flask import Flask
app = Flask(__name__)

authStr = "auth"
@app.route(f"/{authStr}/register")
def register():
 return "Hello World!"

@app.route(f"/{authStr}/login")
def login():
 return "Welcome back!"

if __name__ == "__main__":
 app.run()

1
2
3
4
5
6
7
8
9
10
11
12
13
14

KISSKISS

"Keep it Simple, Stupid" (KISS) principles state that a
software system works best when things are kept

simple. It is the believe that complexity and errors are
correlated.

Your aim should often be to use the simplest tools to

solve a problem in the simplest way.

KISSKISS

Example 1: Write a python function to generate a
random number with up to 50 characters that consist

of lowercase and uppercase characters

def randomGenerate(elems):
 pass

1
2

KISSKISS

Example 2: Write a function that prints what day of
the week it is today

https://stackoverflow.com/questions/9847213/how-do-i-get-the-day-of-week-given-a-date-in-python

https://stackoverflow.com/questions/9847213/how-do-i-get-the-day-of-week-given-a-date-in-python

KISSKISS

Example 3: Create your own git commit command

https://stackoverflow.com/questions/9847213/how-do-i-get-the-day-of-week-given-a-date-in-python

python3 commit.py -m "Message"
python3 commit.py -am "All messages"

1
2

https://stackoverflow.com/questions/9847213/how-do-i-get-the-day-of-week-given-a-date-in-python

EncapsulationEncapsulation

Encapsulation: Maintaining type abstraction by
restricting direct access to internal representation of

types (types include classes)

EncapsulationEncapsulation

Example:

1. Create a file that stores an x and y coordinate
2. Convert that file to a class type with two fields
3. Encapsulate those fields for abstraction reasons
4. Modify the internal representation to polar form

Top-down thinkingTop-down thinking

Also commonly known as "You aren't gonna need it"
(YAGNI) that says a programmer should not add

functionality until it is needed.

Top-down thinking says that when building
capabilities, we should work from high levels of
abstraction down to lower levels of abstraction.

Top-down thinkingTop-down thinking

Question 1: Given two Latitude/Longitude
coordinates, find out what time I would arrive at my
destination if I left now. Assume I travel at the local

country's highway speed

2) Example of starting project
3) Find my best timetable

- Pro: Prevents creating pointless capabilities
- Con: Sometimes initially creates pointless separation

Top-down thinkingTop-down thinking

Question 2: Determine my 20T1 UNSW timetable
with the minimal amount of days spend at UNSW.

Top-down thinkingTop-down thinking

The main thing to be careful with is sometimes this
approach can add overly complex abstractions. Often,

refactoring is useful to undertake afterward.

Why is well designed software important?Why is well designed software important?

When you only do this loop once,
writing bad code has minimal impacts
When we complete this "cycle" many
times, modifying bad code comes at a
high cost

Why is well designed software important?Why is well designed software important?

"Poor software quality costs more than $500 billion
per year worldwide" – Casper Jones

Systems Sciences Institute at IBM found that it costs

 to fix a software bug
after release, rather than during the design process

four- to five-times as much

http://blog.celerity.com/the-true-cost-of-a-software-bug

Why do we write bad code?Why do we write bad code?

Often, our default tendency is to write bad code. Why?

It's quicker not to think too much about things
Good code requires thinking not just about now,
but also the future

Pressure from business we're looking for
Refactoring takes time

Bad code: Easy short term, hard long term

Good code: Hard short term, easy long term

Why do we want to write Why do we want to write goodgood code? code?

More consistent with Agile Manifesto
"Welcome changing requirements"

Adapt easier to the natural SD life cycle

Iteration 3Iteration 3

More front-end additions are coming in week 8

Iteration 3 has been released

https://gitlab.cse.unsw.edu.au/COMP1531/19T3-cs1531-project/

Iteration 3 \ ExceptionsIteration 3 \ Exceptions

Iteration 3 \ RefactoringIteration 3 \ Refactoring

Code refactoring: Process of restructuring existing
code without changing it's external behaviour - often
with the purpose of making it easier to understand

and simpler to modify

Often, this appears as trying to remove design smells
in order to employ good design principles.

A huge part of iteration 3 will be refactoring.

Finding a balanceFinding a balance

Don't over-optimise to remove design smells
Don't apply principles when there are no design
smells - unconditional conforming to a principle is
a bad idea, and can sometimes add complexity
back in

Next MondayNext Monday

Project structures and importing
Help with timers
Help with file uploads

