
COMP1531COMP1531
2.1 - Requirements

UpdatesUpdates

Lecture CodeLecture Code

Lecture code available at:

https://gitlab.cse.unsw.edu.au/COMP1531/19T3-lectures

https://gitlab.cse.unsw.edu.au/COMP1531/19T3-lectures

Lab reminderLab reminder

Don't forget that lab submissions are in two parts:

1. Submission of the lab via "1531 submit" on Sunday 5pm
the week it was released

2. Getting it checked off in-person (manually) with your
tutor in the lab the week it was released, or the week
after

You must complete both of these to be awarded the marks

Python knowledgePython knowledge

We will teach you enough python to complete the activities.

But this is barely the surface. We strongly encourage you to
do your own reading into Python.

SDLCSDLC

RequirementsRequirements

Requirements

Requirements Engineering

Elicitation Analysis Specification Validation

User Stories

RequirementsRequirements
IEEE defines a requirement as:

A condition or capability needed by a user to solve a

problem or achieve an objective

We would also describe requirements as:

Agreement of work to be completed by all stakeholders
Descriptions and constraints of a proposed system

Functional v Non-FunctionalFunctional v Non-Functional

Functional requirements specify a
specific capability/service that the system

should provide.

Non-functional requirements place a
constraint on how the system can achieve

that. Typically this is a performance
characteristic.

Functional v Non-FunctionalFunctional v Non-Functional

For example:

Functional: The system must send a
notification to all users whenever there is a

new post, or someone comments on an
existing post

Non-functional: The system must send

emails no later than 30 minutes after from
such an activity

Requirements EngineeringRequirements Engineering
We need a durable process to determine requirements

“The hardest single part of building a software system is

deciding what to build. No part of the work so cripples the
resulting systems if done wrong” (Brooks, 1987)

Requirements EngineeringRequirements Engineering
Requirements Engineering is:

A set of activities focused on identifying the purpose
and goal of a software system
A negotiation process where stakeholders agree on
what they want. Stakeholders include:

End user(s)
Client(s) (often businesses)
Design team(s)

Requirements EngineeringRequirements Engineering
Requirements engineering often follows a logical process

across 4 steps:

1. Elicitation of raw requirements from stakeholders
2. Analysis of requirements
3. Formal specification of requirements
4. Validation of requirements

RE | Step 1 | ElicitationRE | Step 1 | Elicitation
Questions and discovery

Market Research
Interviews with Stakeholders
Focus groups
Asking questions "What if? What is?"

RE | Step 2 | AnalysisRE | Step 2 | Analysis
Building the picture

Identify dependencies, conflicts, risks
Establish relative priorities
Usually done through:

User stories (discussed today)
Use cases (discussed next week)

RE | Step 3 | SpecificationRE | Step 3 | Specification
Refining the picture

Establishing the right sense of granularity
There is no perfect way to granulate

Often the stage of breaking up into functional and non-
functional
E.G. Try and granulate "The system shall keep the door
locked at all times, unless instructed otherwise by an
authorised user. When the lock is disarmed, a
countdown shall be initiated at the end of which the
lock shall be automatically armed (if still disarmed)"

RE | Step 4 | ValidationRE | Step 4 | Validation

Going back to stakeholders and ensuring
requirements are correct

Challenges during RE?Challenges during RE?

What are some challenges we may face while engaging in
Requirements engineering?

Challenges during RE?Challenges during RE?

What are some challenges we may face while engaging in
Requirements engineering?

Requirements sometimes only understood after
design/build has begun
Clients/customers sometimes don't know what they
want
Clients/customers sometimes change their mind
Developers might not understand the subject domain
Limited access to stake holders
Jumping into details or solutions too early (XY problem)

What matters?What matters?

Investigate stakeholder needs
Expand, refine, and connect specific ideas
Understand the iterative and ongoing nature

Humans are imperfect

User Stories - OverviewUser Stories - Overview

User Stories are a method of requirements engineering
used to inform the development process and what

features to build.

User Stories - StructureUser Stories - Structure
When a customer tells you what they want, try and express
it in the form As a < type of user >, I want < some goal >

so that < some reason >

E.G. They say:

E.G. They say:
A student can purchase monthly parking passes
online

 But your story becomes:
 As a student, I want to purchase a parking pass so
that I can drive to school

User Stories - StructureUser Stories - Structure

Product

Epic 1

Story 1

Epic 2 Epic 3

Story 2 Story 3 Story 4 Story 5 Story 6

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

User Stories - NatureUser Stories - Nature
User stories:

Are written in non-technical language
Are user-goal focused, not product-feature focused

User stories inform feature decisions

Why do we care?

The keep customers at the centre
Keep it problem focused, not solution focused

User Stories - ActivityUser Stories - Activity

Let's design a bag.

Or a to-list.

Or anything.

User Stories - MoreUser Stories - More

Read more about user stories here:

https://www.atlassian.com/agile/project-
management/user-stories

https://www.atlassian.com/agile/project-management/user-stories

Python - DictionariesPython - Dictionaries

Lists are sequential containers of
memory. Values are referenced by their
integer index (key) that represents their

location in an order

Python - DictionariesPython - Dictionaries

Lists are sequential containers of
memory. Values are referenced by their
integer index (key) that represents their

location in an order

Python - DictionariesPython - Dictionaries

Dictionaries are associative containers
of memory. Values are referenced by their

string key that maps to a value

name "sally"

age 18

height "187cm"

Python - DictionariesPython - Dictionaries

Dictionaries are associative containers
of memory. Values are referenced by their

string key that maps to a value

userData = {}
userData["name"] = "Sally"
userData["age"] = 18
userData["height"] = "187cm"
print(userData)

1
2
3
4
5

{'name': 'Sally', 'age': 18, 'height': '187cm'}1

dict_basic_1.py

Python - DictionariesPython - Dictionaries

There are a number of different ways we
can construct and interact with

dictionaries

userData = {
 'name' : 'Sally',
 'age' : 18,
 'height' : '186cm', # Why a comma?
}
userData['height'] = '187cm'
print(userData)

1
2
3
4
5
6
7

{'name': 'Sally', 'age': 18, 'height': '187cm'}1

dict_basic_2.py

Python - DictionariesPython - Dictionaries

Basic loops are over
keys not values:

How would we modify

this to print out the
values instead?

userData = [
 {
 'name' : 'Sally',
 'age' : 18,
 'height' : '186cm',
 }, {
 'name' : 'Bob',
 'age' : 17,
 'height' : '188cm',
 },
]
for user in userData:
 print("Whole user: ", user)
 for part in user:
 print(f" {part}")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Whole user: {'name': 'Sally', 'age': 18, 'height': '186cm'}
 name
 age
 height
Whole user: {'name': 'Bob', 'age': 17, 'height': '188cm'}
 name
 age
 height

1
2
3
4
5
6
7
8

dict_loop.py

Python - DictionariesPython - Dictionaries

userData = {'name' : 'Sally','age' : 18, \
 'height' : '186cm'}

for user in userData.items():
 print(user)
print("====================")

for user in userData.keys():
 print(user)

print("====================")
for user in userData.values():
 print(user)

1
2
3
4
5
6
7
8
9

10
11
12
13

('name', 'Sally')
('age', 18)
('height', '186cm')
====================
name
age
height
====================
Sally
18
186cm

1
2
3
4
5
6
7
8
9
10
11

dict_loop_2.py

Python - DictionariesPython - Dictionaries

Q. Write a python program that takes in a
series of words from STDIN and outputs
the frequency of how often each vowel

appears

Python - ExceptionsPython - Exceptions
An exception is an action that disrupts the

normal flow of a program. This action is
often representative of an error being

thrown. Exceptions are ways that we can
elegantly recover from errors

Python - ExceptionsPython - Exceptions

import sys

def sqrt(x):
 if x < 0:
 sys.stderr.write("Error Input < 0\n")
 sys.exit(1)
 return x**0.5

if __name__ == '__main__':
 print("Please enter a number: ",)
 inputNum = int(sys.stdin.readline())
 print(sqrt(inputNum))

1
2
3
4
5
6
7
8
9

10
11
12

The simplest way to deal with problems...

Just crash

exception_1.py

Python - ExceptionsPython - Exceptions

import sys

def sqrt(x):
 if x < 0:
 raise Exception(f"Error, sqrt input {x} < 0")
 return x**0.5

if __name__ == '__main__':
 print("Please enter a number: ",)
 inputNum = int(sys.stdin.readline())
 print(sqrt(inputNum))

1
2
3
4
5
6
7
8
9

10
11

Now instead, let's raise an exception

However, this just gives us more
information, and doesn't help us handle it

exception_2.py

Python - ExceptionsPython - Exceptions

import sys

def sqrt(x):
 if x < 0:
 raise Exception(f"Error, sqrt input {x} < 0")
 return x**0.5

if __name__ == '__main__':
 print("Please enter a number: ",)
 inputNum = int(sys.stdin.readline())
 print(sqrt(inputNum))

1
2
3
4
5
6
7
8
9

10
11

Now instead, let's raise an exception

However, this just gives us more
information, and doesn't help us handle it

exception_2.py

Python - ExceptionsPython - Exceptions

import sys

def sqrt(x):
 if x < 0:
 raise Exception(f"Error, sqrt input {x} < 0")
 return x**0.5

if __name__ == '__main__':
 try:
 print("Please enter a number: ",)
 inputNum = int(sys.stdin.readline())
 print(sqrt(inputNum))
 except Exception as e:
 print(f"Error when inputting! {e}. Please try again:")
 inputNum = int(sys.stdin.readline())
 print(sqrt(inputNum))

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

If we catch the exception, we can better
handle it

exception_3.py

Python - ExceptionsPython - Exceptions

import sys

def sqrt(x):
 if x < 0:
 raise Exception(f"Error, sqrt input {x} < 0")
 return x**0.5

if __name__ == '__main__':
 print("Please enter a number: ",)
 while True:
 try:
 inputNum = int(sys.stdin.readline())
 print(sqrt(inputNum))
 break
 except Exception as e:
 print(f"Error when inputting! {e}. Please try again:")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Or we could make this even more robust

exception_4.py

Python - ExceptionsPython - Exceptions

import sys

def sqrt(x):
 if x < 0:
 raise Exception(f"Input {x} is less than 0. Cannot sqrt a number < 0")
 return x**0.5

if __name__ == '__main__':
 if len(sys.argv) == 2:
 try:
 print(sqrt(int(sys.argv[1])))
 except Exception as e:
 print(f"Got an error: {e}")

1
2
3
4
5
6
7
8
9

10
11
12
13

Key points:

Exceptions carry data
When exceptions are thrown, normal
code execution stops

throw_catch.py

Python - ExceptionsPython - Exceptions
Examples with pytest (very important for

project)

import pytest

def sqrt(x):
 if x < 0:
 raise Exception(f"Input {x} is less than 0. Cannot sqrt a number < 0")
 return x**0.5

def test_sqrt_ok():
 assert sqrt(1) == 1
 assert sqrt(4) == 2
 assert sqrt(9) == 3
 assert sqrt(16) == 4

def test_sqrt_bad():
 with pytest.raises(Exception, match=r"*Cannot sqrt*"):
 sqrt(-1)
 sqrt(-2)
 sqrt(-3)
 sqrt(-4)
 sqrt(-5)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

pytest_except_1.py

Python - Exception Sub-typesPython - Exception Sub-types

Other basic exceptions can be caught with
the "Exception" type

import pytest

def sqrt(x):
 if x < 0:
 raise ValueError(f"Input {x} is less than 0. Cannot sqrt a number < 0")
 return x**0.5

def test_sqrt_ok():
 assert sqrt(1) == 1
 assert sqrt(4) == 2
 assert sqrt(9) == 3
 assert sqrt(16) == 4

def test_sqrt_bad():
 with pytest.raises(Exception):
 sqrt(-1)
 sqrt(-2)
 sqrt(-3)
 sqrt(-4)
 sqrt(-5)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

pytest_except_2.py

ProjectProject
Project iteration 1has been released:

pytest
User Stories

