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ImportantImportant
informationinformation



ProjectProject
The end of the project is approaching....
Please make sure to read the spec where it
outlines individual expectations
My recent analysis suggests there are a significant
number who have or will not meet all the listed
criteria



The Global KeywordThe Global Keyword
Global is only necessary if you intend to assign to a
global variable
message = ["Hello", "I'm", "stored", "in", "a", "global", "variable"]
 
def example1():
    # Only reading from the variable; don't need global
    print(message)
 
def example2():
    # Modifying the list stored in the variable; don't need global.
    message[0] = "G'day"
 
def example3():
    # Calling a method on the object stored in the variable; don't need global
    message.append("mate")
 
def example4():
    # Assigning a new value to a variable; need global
    global message
    message = ["Good", "day", "sir", "I", "am", "a", "variable", "most", "global"]
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IteratorsIterators
Let us represent countable sets of values
The for loop in python works for any iterator
Example iterators:

class Squares:
    def __init__(self):
        self.i = 0
 
    def __iter__(self):
        return self
 
    def __next__(self):
        self.i += 1
        return self.i*self.i
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class Fibonacci():
    def __init__(self):
        self.a = 0
        self.b = 1
 
    def __iter__(self):
        return self
 
    def __next__(self):
        c = self.a + self.b
        self.a = self.b
        self.b = c
        return self.a
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GeneratorsGenerators
A different way of writing iterators
Defined via generator functions instead of classes
Example generator

def simple_generator():
    print("Hello")
    yield 1
    print("Nice to meet you")
    yield 2
    print("I am a generator")
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GeneratorsGenerators
Intuitively, you can think of a generator as a
suspendable computation
Calling next() on a generator executes it until it
reaches a yield, at which point it is suspended (frozen)
until the subsequent call to next()



GeneratorsGenerators
More useful examples

def squares():
    i = 0
    while True:
        i += 1
        yield i*i
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def fib():
    a = 0
    b = 1
    while True:
        c = a + b
        a = b
        b = c
        yield a
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