
COMP1531COMP1531
5.3 Software Complexity

How complicated isHow complicated is
software?software?

No Silver BulletNo Silver Bullet
A famous paper from 1986:

No Silver Bullet – Essence and Accident in Software
Engineering by Fred Brooks

Described software complexity by dividing it into two
categories essential and accidental.
Further conclusions of the paper are much debated

EssentialEssential
Complexity that is inherent
to the problem.

For example, if the user or
client requires the program
to do 30 different things,
then those 30 things are
essential

AccidentalAccidental
Complexity that is not
inherent to the problem.

For example, generating or
parsing data in specific
formats.

EssentialEssential
Fundamentally can't be
removed, but can be
managed with good
software design.

AccidentalAccidental
Can be somewhat
mitigated by engineering
decisions; e.g. smart use of
libraries, standards, etc.

Hard to remove entirely.

Open questionsOpen questions
Is there a non-intuitive process for distinguishing
accidental and essential complexity?
How much of the complexity of modern software is
accidental?
To what degree has or will accidental complexity be
removed in future?

Further readingFurther reading
The original No Silver Bullet paper:

A more modern description:

A recent rebuttal:

http://faculty.salisbury.edu/~xswang/Research/Papers
/SERelated/no-silver-bullet.pdf

https://stevemcconnell.com/articles/software-
engineering-principles/

https://blog.ploeh.dk/2019/07/01/yes-silver-bullet/

http://faculty.salisbury.edu/~xswang/Research/Papers/SERelated/no-silver-bullet.pdf
https://stevemcconnell.com/articles/software-engineering-principles/
https://blog.ploeh.dk/2019/07/01/yes-silver-bullet/

Can we measureCan we measure
complexity?complexity?

CouplingCoupling
A measure of how closely connected different
software components are
Usually expressed as a simple ordinal measure of
"loose" and "tight"
For example, web applications tend to have a
frontend that is loosely coupled from the backend

CohesionCohesion
The degree to which elements of a module belong
together
Elements belong together if they're somehow related
Usually expressed as a simple ordinal measure of
"low" and "high"
We'll come back to this in a later week

Cyclomatic complexityCyclomatic complexity
An interval measure of the branching complexity of
functions
Computed by counting the number of linearly-
independent paths through a function

Cyclomatic complexityCyclomatic complexity
To compute:
1. Convert function into a graph
2. Calculate the value of the formula

where e is the number of edges and n is the
number of nodes

V (G) = e− n+ 2

Example 1Example 1

def foo():
 if A:
 B
 else:
 C
 D

1
2
3
4
5
6

A

B C

D

V (G) = 4 − 4 + 2 = 2

Example 2Example 2

def foo():
 if A:
 B
 else:
 if C:
 D
 E

1
2
3
4
5
6
7

A

B C

E

V (G) = 6 − 5 + 2 = 3

D

Example 3Example 3

def foo():
 while A:
 B
 C

1
2
3
4

A

B C

V (G) = 3 − 3 + 2 = 2

Example 4Example 4

def day_to_year(days):
 year = 1970

 while days > 365:
 if is_leap_year(year):
 if days > 366:
 days -= 366
 year += 1
 else:
 days -= 365
 year += 1

 return year

1
2
3
4
5
6
7
8
9

10
11
12
13

V (G) = 8 − 6 + 2 = 4

Example 5Example 5

def day_to_year(days):
 year = 1970

 while days > 0:
 if is_leap_year(year):
 days -= 366
 else:
 days -= 365
 year += 1

 return year - 1

1
2
3
4
5
6
7
8
9

10
11

V (G) = 7 − 6 + 2 = 3

UsageUsage
A simple understandable measure of function
complexity
Some people argue 8 should be the maximum
cyclomatic complexity of a function

DrawbacksDrawbacks
Assumes non-branching statements have no
complexity
Keeping cyclomatic complexity low encourages
splitting functions up, regardless of whether that
really makes the code more understandable

