
COMP1531COMP1531
10.1 Design

WTF is design?WTF is design?

ProgrammingProgramming

DesignDesign

Software designSoftware design
Understandability
Maintainability
Extensibility
Reusability
Testability
Reliability
Performance
Usability
Safety
Security
....

UnderstandabilityUnderstandability
Can the code be understood?
What does it mean to understand code?
Is it sufficient to understand what it does, or do we
also need to understand how it does it?

EncapsulationEncapsulation
Using encapsulation, we only need to understand the
externally observable behaviour of software
components in order to use them
The other game

ExtensibilityExtensibility
Being able to add new capabilities or functionality
Making no changes
Making only minor changes

Tic-tac-toeTic-tac-toe
Only 3x3 with 2 players.
What if we wanted to make it 4x4 connect 4 or even
7x6 connect 4*?
What if we wanted to add another player?
What if we wanted to be 3D?
Can we make the class sufficiently extensible to allow
for all these changes?
Should we do that?

* See M,N,K game

https://en.wikipedia.org/wiki/M,n,k-game

Extensibility ObsessionExtensibility Obsession
It's easy to focus on extensibility at the cost of other
design considerations
You'll learn more about how to make OO designs
extensible in COMP2511

ReusabilityReusability
Can we re-use software components?
Components that are tightly coupled to many other
components are hard to re-use.
Components with low cohesion are also hard to re-use

Ultimate tic-tac-toeUltimate tic-tac-toe
A 3x3 grid of different tic-tac-toe games
Aim: To have 3 winning games horizontally, vertically
or diagonally
Rules: The same as regular tic-tac-to except the minor-
square a player places their mark in determines the
major square the other player must place their mark
in.

Grid is empty at the startGrid is empty at the start

Player 1 makes their movePlayer 1 makes their move

X

Player 2 must now make a move in thePlayer 2 must now make a move in the
left-middle gameleft-middle game

X

They have now "sent" player 1 to theThey have now "sent" player 1 to the
right middle gameright middle game

X

O

Player 1 has won one of the games, butPlayer 1 has won one of the games, but
that game can still be playedthat game can still be played

O
X X X

O
X

X

O

O
O

X

Player 1 has won three games verticallyPlayer 1 has won three games vertically
so wins the overall gameso wins the overall game

O
O O

X
X X X

O

O
O
X O
X O

X
X
O X

O
O

X O

X X X

Ultimate tic-tac-toeUltimate tic-tac-toe
Can we create this re-using our existing TicTacToe
class?

LibrariesLibraries
Most code re-use is through libraries.
Software engineering can be an exercise in composing
libraries to do what we want.
This is necessary for building useful software.
What's the downside?

Case study: leftpadCase study: leftpad
A Javascript library that had many users, mostly
indirect
Owing to a disagreement, the author removed the
library from NPM
This caused thousands of Javascript-based
applications and libraries to break

The entire libraryThe entire library
module.exports = leftpad;
function leftpad (str, len, ch) {
 str = String(str);
 var i = -1;
 if (!ch && ch !== 0) ch = ' ';
 len = len - str.length;
 while (++i < len) {
 str = ch + str;
 }
 return str;
}

1
2
3
4
5
6
7
8
9

10
11

LibrariesLibraries
Depending on a library can mean you rely on:

The author not removing the library
The author not breaking the library with an update
The author not being malicious
The infrastructure that provides the library being
available
The other libraries it depends on

Is leftpad an example of prioritising reusability over all
other considerations?

Effective use of librariesEffective use of libraries
Can we mitigate some the issues related to library
usage?
A lot of the problems are related to libraries changing
without our knowledge.

PinningPinning
Why not just pin/freeze all the dependencies to a
specific version?
Good for applications, because we want to build them
in a reproducible way
Doesn't work for libraries, because we want them to
be reusable

Diamond DependenciesDiamond Dependencies

PyJWT

MyCoolLib OtherLib

==1.7.1 ==1.6.4

SomeApp

VersioningVersioning
Software products typically have version numbers or
strings to differentiate their iterations
For example, at the start of this course, the latest
version of Python was 3.7, but now 3.8 is the latest.
On the CSE machines:

$ python3 --version
Python 3.7.3

1
2

Semantic VersioningSemantic Versioning
Given a version number MAJOR.MINOR.PATCH,
increment the:

MAJOR version when you make incompatible API
changes,
MINOR version when you add functionality in a
backwards compatible manner, and
PATCH version when you make backwards
compatible bug fixes.

https://semver.org

https://semver.org/

Semantic VersioningSemantic Versioning
For example, the latest PyJWT is 1.7.1. A future
version:

1.7.2 - Would contain only bug fixes.
1.8.0 - Would contain new features, but all previous
features should work as before. Code that used
the old version of the library should still work with
new version.
2.0.0 - May "break" previous features. This can
include functions being removed, taking different
arguments, or giving different output.

requirements.txtrequirements.txt

If we want broad (but still safe) version ranges we can
define them in requirements.txt like so:

PyJWT >= 1.7, < 2.0
hypothesis >= 4.44, < 5.0

1
2

requirements.txtrequirements.txt
These are all equivalent:

PyJWT >= 1.7, < 2.0
hypothesis >= 4.44, < 5.0

1
2

PyJWT >= 1.7, == 1.*
hypothesis >= 4.44, == 4.*

1
2

PyJWT ~= 1.7
hypothesis ~= 4.44

1
2

Further readingFurther reading
An analysis of the leftpad incident

Dependency Hell

An attempt fix to dependency hell

https://www.davidhaney.io/npm-left-pad-have-we-
forgotten-how-to-program/

https://en.wikipedia.org/wiki/Dependency_hell

https://nixos.org/nix/

https://www.davidhaney.io/npm-left-pad-have-we-forgotten-how-to-program/
https://en.wikipedia.org/wiki/Dependency_hell
https://nixos.org/nix/

