
COMP1531COMP1531
3.1 - More Objects in python

Objects in pythonObjects in python
Contain attributes and methods
Attributes are values inside objects
Methods are functions inside objects
Methods can read or modify attributes of the object

A simple exampleA simple example
from datetime import date

today = date(2019, 9, 26)

'date' is its own type
print(type(today))

Attributes of 'today'
print(today.year)
print(today.month)
print(today.day)

Methods of 'today'
print(today.weekday())
print(today.ctime())

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Creating objectsCreating objects
Classes are blueprints for objects

class Student:
 def __init__(self, zid, name):
 self.zid = zid
 self.name = name
 self.year = 1

 def advance_year(self):
 self.year += 1

 def email_address(self):
 return self.zid + "@unsw.edu.au"

rob = Student("z3254687", "Robert Leonard Clifton-Everest")
hayden = Student("z3418003", "Hayden Smith")

1
2
3
4
5
6
7
8
9

10
11
12
13
14

DetailsDetails
Methods can be invoked in different ways

rob.advance_year()
Student.advance_year(rob)

The 'self' argument is implicitly assigned the object on
which the method is being invoked
The '__init__()' method is implicitly called when an
object is constructed from the class

Aside: variationsAside: variations
Python lets you do the same thing in lots of different
ways
We're teaching the simplest and least error-prone
ways of doing things
We'll come back to this later on.

NamespacingNamespacing
Each class has its own namespace.
Different classes can have methods and attributes
with the same name.

class Course:
 def __init__(self, code, name):
 self.code = code
 self.name = name

 def email_address(self):
 return self.code + "@cse.unsw.edu.au"

comp1531 = Course("cs1531", "Software Engineering Fundamentals")

1
2
3
4
5
6
7
8
9

Duck typingDuck typing
Giving different classes attributes/methods with the
same name can be useful
"If it walks like a duck and it quacks like a duck, then it
must be a duck"
This function works for both Student and Course

def contact_info(authority):
 heading = f"Contact info for {authority.name}"
 body = f"You can reach {authority.name} via {authority.email_address()}"
 return heading + "\n\n" + body

1
2
3
4

IteratorsIterators
In Python, iterators are objects containing a countable
number of elements
For example, we can get an iterator for a list:

animals = ["dog", "cat", "chicken", "sheep"]

animal_iterator = iter(animals)

1
2
3

IteratorsIterators
Any object with the methods __iter__() and __next__() is
an iterator
Duck typing ^^^
Simple example (squares)

class Squares:
 def __init__(self):
 self.i = 0

 def __iter__(self):
 return self

 def __next__(self):
 self.i += 1
 return self.i*self.i

1
2
3
4
5
6
7
8
9

10

For loopsFor loops
Python for loops use iterators behind the scenes
This is valid code:

squares = Squares()

for i in squares: # Loops forever
 print(i)

1
2
3
4

Iterator vs IterableIterator vs Iterable
Intuitively:

An iterator stores the state of the iteration (i.e.
where it's up to).
Something is iterable if it can be iterated over.

Concretely:
An iterator has __iter__() and __next()__ methods.
Iterables have __iter__() methods

For example, lists are iterable, but they are not
iterators
For loops only need to be given something iterable

