
COMP1531COMP1531
10.3 Safety

SafetySafety
Protection from accidental
misuse

SecuritySecurity
Protection from deliberate
misuse

Case study: spreadsheetsCase study: spreadsheets
Around 94% of spreadsheets contain errors*
For any given spreadsheet formula, there's a 1%
chance it contains an error**
Why?

*
**

What We Know About Spreadsheet Errors (2005)
Errors in Operational Spreadsheets (2009)

https://www.researchgate.net/profile/Raymond_Panko/publication/228662532_What_We_Know_About_Spreadsheet_Errors/links/53eb1f7a0cf2fb1b9b6adbef/What-We-Know-About-Spreadsheet-Errors.pdf
http://tuck-fac-cen.dartmouth.edu/images/uploads/faculty/serp/Errors.pdf

Software safetySoftware safety
Things that can go wrong:

C:
Reading from memory that has not been
initialised
Dereferencing a null pointer
"Using" memory after it has been freed
Writing outside the bounds of an array
Forgetting to free allocated memory

Python:
Accessing a variable that hasn't been initialised
Accessing a member that an object doesn't
have
Passing a function a type of object it doesn't
expect

I promisedI promised

StaticStatic
Static properties can be
inferred without executing
the code
E.g. pylint statically checks
that variables are initialised
before they're used

DynamicDynamic
Dynamic properties are
checked during execution
E.g. python dynamically
checks that an index is
inside the bounds of a list
and throws an exception if
it isn't (unlike an array in C)

Memory safetyMemory safety
Protecting from bugs relating to memory access
Python is memory safe as it prevents access memory
that hasn't been initialised or allocated
The checks are most dynamic (at runtime)
In python, safety is prioritised over the negligible
performance cost of bounds-checking

Memory SafetyMemory Safety
C is not memory safe
No bounds checking is performed for array accesses
Pointers can still be dereferenced even if they don't
point to allocated memory
C prioritises performance over safety (and security)

Handling runtime errorsHandling runtime errors
Different languages have difference conventions for
handling errors
Python relies on Exceptions for the majority of error
handling. E.g.

will thrown a KeyError exception if "fish" is not in the
dictionary animals.
C does not support exceptions at all, so errors
typically have to be included in the return value.

animals["fish"]1

Easier to Ask for ForgivenessEasier to Ask for Forgiveness
than Permissionthan Permission

 is the python convention for handling errors.
It encourages you to assume something will work and
just have an exception handler to deal with anything
that might go wrong
Pros:

Can simplify the core logic
Multiple different sorts of errors can be handled
with one except block

Cons:
Makes code non-structured
Harder to reason what code will be executed.

EAFP

https://docs.python.org/3.4/glossary.html#term-eafp

Look Before You LeapLook Before You Leap
 is a convention for avoiding errors popular in

languages like C
Unlike EAFP it encourages you to check that
something can be done before you do it
Pros:

Doesn't require exceptions
Code is structured and therefore easier to reason
about

Cons:
Core logic can be obscured by error checks

LBYL

https://docs.python.org/3.4/glossary.html#term-lbyl

Removing errors staticallyRemoving errors statically
Rather than dynamically checking for certain errors, it
is always better if errors can be detected statically
Rules out entire classes of bugs
In Python, pylint can statically detect certain errors
(e.g. unknown identifier)
In C, the compiler detects a number of errors
including type errors.

Type safetyType safety
Preventing mismatches between the actual and
expected type of variables, constants and functions
C is type-safe*, as types must be declared and the
compiler will check that the types are correct
Python, on its own, is not type-safe. Everything has a
type, but that type is not known till the program is
executed

* mostly

Type-checkingType-checking
Languages with a non-optional built-in static type
checking

C
Java
Haskell

Languages with optional but still built-in static type
checking

Typescript
Objective C

Languages with optional external type checkers
Python
Ruby

MypyMypy
Mypy is a type checker for python
Python allows you to give variables static types, but
without an external checker they are ignored
Because of python's semantics, type checking it can be
complex

Duck typing
Objects with dynamically changing members

ExamplesExamples
def count(needle, haystack):
 '''
 Returns the number of copies of integer needle in the list of integers haystack.
 '''
 copies = 0
 for value in haystack:
 if needle == value:
 copies += 1
 return copies

def search(needle, haystack):
 '''
 Returns the first index of the integer needle in the list of integers haystack.
 '''
 for i in range(0, len(haystack)):
 if haystack[i] == needle:
 return i

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Further readingFurther reading
The Mypy website:

How Dropbox uses MyPy
http://mypy-lang.org/

https://blogs.dropbox.com/tech/2019/09/our-
journey-to-type-checking-4-million-lines-of-python/

http://mypy-lang.org/
https://blogs.dropbox.com/tech/2019/09/our-journey-to-type-checking-4-million-lines-of-python/

