COMPI153]

3.1 - More Objects in python



Objects in python

Contain attributes and methods

Attributes are values inside objects

Methods are functions inside objects

Methods can read or modify attributes of the object



A simple example

datetime date

today = date(2019, 9, 26)

print (type(today))

0O ~No0 bW

O

print (today.year)
print(today.month)
print (today.day)

L e e
B W N~ o

print(today.weekday())
print(today.ctime())

=
(62}



Creating objects

e (lasses are blueprints for objects

1 Student:

2 __init__ (self, zid, name):
3 self.zid = zid

4 self.name = name

5 self.year =1

6

7 advance_year(self):

8 self.year += 1

)

10 email address(self):

11 self.zid + "@unsw.edu.au"
12

13 rob = Student("z3254687", "Robert Leonard Clifton-Everest")
14 hayden = Student("z3418003", "Hayden Smith")



Details

e Methods can be invoked in different ways

= rob.advance_year()
= Student.advance_year(rob)

e The 'self' argument is implicitly assigned the object on
which the method is being invoked

e The'_init_ ()’ method is implicitly called when an
object is constructed from the class



Aside: variations

e Python lets you do the same thing in lots of different
ways

e We're teaching the simplest and least error-prone
ways of doing things

e We'll come back to this later on.



Namespacing

e Each class has its own namespace.
e Different classes can have methods and attributes
with the same name.

Course:
__init__ (self, code, name):
self.code = code
self.name = name

email address(self):

1
2
3
4
5
)
7 self.code + "@cse.unsw.edu.au"
8

9

compl531 = Course("csl531", "Software Engineering Fundamentals")



Duck typing

Giving different classes attributes/methods with the
same name can be useful

"If it walks like a duck and it quacks like a duck, then it
must be a duck"

e This function works for both Student and Course

S W N -

contact_info(authority):
heading = f"Contact info for {authority.name}"

body = f"You can reach {authority.name} via {authority.email address()}"
heading + "\n\n" + body



|terators

e |n Python, iterators are objects containing a countable
number of elements
e For example, we can get an iterator for a list:
1 animals = ["dog", "cat", "chicken", "sheep"]

2
3 animal iterator = iter(animals)



Iterators

e Any object with the methods __iter_ () and __next_ () is
an iterator

e Duck typing AMA

e Simple example (squares)

Squares:
__init__ (self):
self.i =0

__iter_(self):
self

__next__ (self):
self.i += 1
self.i*self.i

O VWO JOUL b WN -

)



For loops

e Python for loops use iterators behind the scenes
e This is valid code:

squares = Squares()

1

2

3 i squares:
4 print (i)



lterator vs Iterable

Intuitively:
m An iterator stores the state of the iteration (i.e.
where it's up to).
= Something is iterable if it can be iterated over.

Concretely:

m An iterator has __iter () and __next() __ methods.
m |[terables have _iter () methods

For example, lists are iterable, but they are not
iterators
For loops only need to be given something iterable



