
COMP1531COMP1531
3.3 - Verification & Validation

VerificationVerification
 Verification in a system life

cycle context is a set of
activities that compares a
product of the system life
cycle against the required
characteristics for that
product. This may include,
but is not limited to,
specified requirements,
design description and the
system itself.

ValidationValidation
Validation in a system life
cycle context is a set of
activities ensuring and
gaining confidence that a
system is able to
accomplish its intended
use, goals and objectives.

*ISO/IEC/IEEE 29148:2018

VerificationVerification
The system has been built
right

ValidationValidation
The right system has been
built

*by intuition

Formal VerificationFormal Verification
Proving (via Mathematics) that a piece of software has
certain desirable properties
Treats the software, or the algorithms implemented in
the software, as a mathematical object that can be
reasoned about.
Typically involves tools like proof assistants, model
checkers or automatic theorem provers.
Not something we cover in this course

Formal VerificationFormal Verification
Tends to have a high cost in terms of effort
E.g. to

it took ~20 person years
and ~480,000 lines of proof script
for ~10,000 of C

verify a microkernel

http://ts.data61.csiro.au/publications/nicta_full_text/7371.pdf

What is testingWhat is testing
anyway?anyway?

“Testing shows the“Testing shows the
presence, not thepresence, not the

absence ofabsence of
bugs” — bugs” — Edsger W.Edsger W.

DijkstraDijkstra

Unit testingUnit testing
 definition:
The testing of individual software components

Method:
White-box

Who:
Software Engineers

ISTQB

https://www.istqb.org/

Integration TestingIntegration Testing
 definition:

Testing performed to expose defects in the interfaces and
in the interactions between integrated components or

systems.
Method:

White-box or Black-box
Who:

Software Engineers or independent testers

ISTQB

https://www.istqb.org/

System TestingSystem Testing
 definition:

The process of testing an integrated system to verify that
it meets specified requirements.

Method:
Black-box

Who:
Normally, independent testers

ISTQB

https://www.istqb.org/

Acceptance TestingAcceptance Testing
 definition:

Formal testing with respect to user needs, requirements,
and business processes conducted to determine whether

or not a system satisfies the acceptance criteria and to
enable the user, customers or other authorized entity to

determine whether or not to accept the system.
Method:

Black-box
Who:

User or Customer

ISTQB

https://www.istqb.org/

How do we know ifHow do we know if
our tests are good?our tests are good?

CoverageCoverage
Test Coverage: a measure of how much of the feature
set is covered with tests
Code coverage: a measure of how much code is
executed during testing

Example: Leap yearsExample: Leap years
def is_leap_year(year):
 if year % 4 != 0:
 return False
 elif year % 100 != 0:
 return True
 elif year % 400 != 0:
 return False
 else:
 return True

1
2
3
4
5
6
7
8
9

Coverage.pyCoverage.py
Measure code coverage as a percentage of statements
(lines) executed
Can give us a good indication how much of our code is
executed by the tests
... and most importantly highlight what has not been
executed.

Example: Year from dayExample: Year from day
def day_to_year(days):
 '''
 Given a number of days from January 1st 1970, return the year.
 '''
 year = 1970

 while days > 365:
 if is_leap_year(year):
 if days > 366:
 days -= 366
 year += 1
 else:
 days -= 365
 year += 1

 return year

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Checking code coverageChecking code coverage
Run Coverage.py for your pytests:

View the coverage report:

Generate HTML to see a breakdown (puts report in
htmlcov/)

 python3­coverage run ­­source=. ­m pytest

 python3­coverage report

 python3­coverage html

Case study:Case study:
Zune BugZune Bug

On December 31st 2008,
Microsoft Zunes stopped
working for the whole
day.
The bug in the above code
caused them to go into an
infinite loop
Hardly catastrophic, but
embarrassing for
Microsoft

Can we find the Zune bugCan we find the Zune bug
with testing?with testing?

Branch coverage checkingBranch coverage checking
For lines that can potentially jump to more than one
other line (e.g. if statements), check how many of the
possible branches were taken during execution
Can be done with the --branch option in Coverage.py
Sometimes referred to as edge coverage

Does code coverage implyDoes code coverage imply
test coverage?test coverage?

What is the rightWhat is the right
level of codelevel of code

coverage?coverage?

SummarySummary
Code coverage is useful
It's more important to look at what's not covered than
the coverage percentage
Branch coverage is a more accurate measurement so
you should use it instead of statement coverage
Like all measurements, it's important to understand
what meaning to attach to it

What is good style?What is good style?

Programs must be written forPrograms must be written for
people to read, and onlypeople to read, and only

incidentally for machines toincidentally for machines to
execute — execute — Abelson & Sussman,Abelson & Sussman,
"Structure and Interpretation of"Structure and Interpretation of

Computer Programs"Computer Programs"

StyleStyle
Ultimately about readability and maintainability
Style guides give rules of thumb and conventions to
follow
...but good style is ultimately hard, if not impossible,
to measure
That said, tools can be a lot of help

There are a lot ofThere are a lot of
tools in moderntools in modern

softwaresoftware
engineeringengineering

PylintPylint
An external tool for statically analysing python code
Can detect errors, warn of potential errors, check
against conventions, and give possible refactorings
By default, it is very strict
Can be configured to be more lenient

Controlling MessagesControlling Messages
Disable messages via the command line

Disable messages in code; e.g.

Disable messages via a config file
If a .pylintrc file is in the current directory it will be used
Can generate one with:

 $ pylint3 ­­disable=<checks> <files_to_check>

 if year % 4 != 0: #pylint: disable=no­else­return

 pylint3 <options> ­­generate­rcfile > .pylintrc

