
COMP1531COMP1531
1.3 - Testing, Teamwork, Project

C-Style TestingC-Style Testing
How did you test in COMP1511?

#include <stdio.h>
#include <assert.h>

double sum(double a, double b) {
 return a + b;
}

int main() {
 assert(sum(1, 2) == 3);
 assert(sum(2, 2) == 4);
 assert(sum(3, 2) == 5);
 printf("All tests passed\n");
}

1
2
3
4
5
6
7
8
9

10
11
12
13

ctest.c

C-Style TestingC-Style Testing
Let's first look at python functions

double sum(double a, double b) {
 return a + b;
}

1
2
3

def sum(a, b):
 return a + b

1
2

Q. What are the key differences?

C-Style TestingC-Style Testing
Let's first look at python functions

double sum(double a, double b) {
 return a + b;
}

1
2
3

def sum(a, b):
 return a + b

1
2

Q. What are the key differences?

No semi-colons
No braces
No typing
"def" to say define function

C-Style TestingC-Style Testing
Q. How would we test this python

function?

def sum(a, b):
 return a + b

1
2

C-Style TestingC-Style Testing
Q. How would we test this python

function?

def sum(a, b):
 return a + b

assert sum(1, 4) == 3

1
2
3
4

cstyletest.c

C-Style TestingC-Style Testing
Let's clean this up and wrap it in a

function, though!

def sum(a, b):
 return a + b

def testSmallNumbers():
 sum(1, 4) == 3

testSmallNumbers()

1
2
3
4
5
6
7

Basic Python testingBasic Python testing
Let's take a look at

What is pytest?

pytest is a library that helps us write
small tests, but can also be used to
write larger and more complex tests
pytest comes with a binary that we run
on command line
pytest detects any function prefixed
with test and runs that function,
processing the assertions inside

pytest

https://docs.pytest.org/en/latest/

pytest - basicpytest - basic

def sum(x, y):
 return x * y

def test_sum1():
 assert sum(1, 2) == 3

test_sum1()

1
2
3
4
5
6
7

$ python3 test1_nopytest.py1

test1_nopytest.py
import pytest

def sum(x, y):
 return x * y

def test_sum1():
 assert sum(1, 2) == 3, "1 + 2 == 3

1
2
3
4
5
6
7

$ pytest-3 test1_pytest.py1

test1_pytest.py

pytest - more complicatedpytest - more complicated

import pytest

def sum(x, y):
 return x + y

def test_small():
 assert sum(1, 2) == 3, "1, 2 == "
 assert sum(3, 5) == 8, "3, 5 == "
 assert sum(4, 9) == 13, "4, 9 == "

def test_small_negative():
 assert sum(-1, -2) == -3, "-1, -2 == "
 assert sum(-3, -5) == -8, "-3, -5 == "
 assert sum(-4, -9) == -13, "-4, -9 == "

def test_large():
 assert sum(84*52, 99*76) == 84*52 + 99*76, "84*52, 99*76 == "
 assert sum(23*98, 68*63) == 23*98 + 68*63, "23*98, 68*63 == "

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

A more complicated test
test_multiple.py

pytest - prefixespytest - prefixes

If you just run

$ pytest-3

Without any files, it will automatically look for
any files in that directory in shape:

test_*.py
*_test.py

pytest - particular filespytest - particular files

You can run specific functions without your test
files with the -k command. For example, we if

want to run the following:

test_small
test_small_negative
test_large

We could run

$ pytest-3 -k small

or try
$ pytest-3 -k small -v

pytest - markerspytest - markers

We can also use a range of decorators to specify
tests in python:

import pytest

def pointchange(point, change):
 x, y = point
 x += change
 y += change
 return (x, y)

@pytest.fixture
def supply_point():
 return (1, 2)

@pytest.mark.up
def test_1(supply_point):
 assert pointchange(supply_point, 1) == (2, 3)

@pytest.mark.up
def test_2(supply_point):
 assert pointchange(supply_point, 5) == (6, 7)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

@pytest.mark.up
def test_3(supply_point):
 assert pointchange(supply_point, 100) == (101, 102

@pytest.mark.down
def test_4(supply_point):
 assert pointchange(supply_point, -5) == (-4, -3)

@pytest.mark.skip
def test_5(supply_point):
 assert False == True, "This test is skipped"

@pytest.mark.xfail
def test_6(supply_point):
 assert False == True, "This test's output is muted

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

pytest - morepytest - more

There are a number of tutorials online for pytest.
.This is a very straightforward one

https://www.guru99.com/pytest-tutorial.html

importing and modulesimporting and modules
calmath.py

def daysIntoYear(month, day):
 total = day
 if month > 0:
 total += 31
 if month > 1:
 total += 28
 if month > 2:
 total += 31
 if month > 3:
 total += 30
 if month > 4:
 total += 31
 if month > 5:
 total += 30
 if month > 6:
 total += 31
 if month > 7:
 total += 30
 if month > 8:
 total += 31
 if month > 9:
 total += 30
 if month > 10:
 total += 31
 return total

def quickTest():
 print(f"month 0, day 0 = {daysIntoYear(0,0)}")
 print(f"month 11, day 31 = {daysIntoYear(11,31)}")

#if __name__ == '__main__':
quickTest()

quickTest()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

import sys

import calmath

if len(sys.argv) != 3:
 print("Usage: importto.py month dayofmonth")
else:
 print(calmath.daysIntoYear(int(sys.argv[1]), \
 int(sys.argv[2])))

1
2
3
4
5
6
7
8
9

importto.py

TeamworkTeamwork

Why do we want to work in teams?

TeamworkTeamwork

What are benefits of working in teams?

TeamworkTeamwork

What are downsides of working in
teams? (as opposed to by yourself)

TeamworkTeamwork

What are downsides of working in
teams? (as opposed to by yourself)

TeamworkTeamwork

You do not scale.

David Whiteing, ex-CIO of Combank
https://www.youtube.com/watch?

v=tQNjhDPCaDI

https://www.youtube.com/watch?v=tQNjhDPCaDI

TeamworkTeamwork

Scenario
Your 4th group member hasn't turned up

for 1.5 weeks and isn't replying to their
emails. What do you do?

TeamworkTeamwork

Scenario
Your group is split into two pairs of people.
One pair wants to build the navigation bar
at the top of the page. One wants it on the

side. How do you decide what to do?

Team-based ProjectTeam-based Project

The project is a 9 week timeframe where your team
has been contracted as backend developers to

provide a web server for a client.

The front end has been outsourced to another
contractor, and you've been told it will not be
completed until mid-October
Specifications may change over that period

Team-based ProjectTeam-based Project

Week Topic

1

2 Iteration 1 released

3

4 Iteration 1 review; Iteration 2 released

5

6

7 Iteration 2 review; Iteration 3 released

8

9

10 Iteration 3 review

Project schedule
Iteration 1:

User stories
Requirements
Testing

Iteration 2:
Web-server
Development
Testing

Iteration 3:
More features
Deployment

Team-based ProjectTeam-based Project

Project schedule

Groups formed during your week 2 tutorial
Project iteration 1 released Sunday night,
along with marking criteria.

Discussed in Tuesday's lecture
Marks awarded for each part of the iteration

Team-based ProjectTeam-based Project

In your groups of 4-5

You must all:

Contribute equally (via git)
Write code
Write documentation (e.g. user stories)

If students don't contribute equally, marks will

be deducted for individuals.

We will use a peer assessment tool

