
COMP9020 Lectures 9-11
Session 2, 2017

Counting, Probability and Expectation

Textbook (R & W) - Ch. 5, Sec. 5.1–5.3; Ch. 9

Problem sets 9–11

Supplementary Exercises Ch. 5, 9 (R & W)
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Announcements

Final Exam ...

Friday, 3 November, 8:45am

Multiple locations!

Final assignment ...

Available Saturday

Due Sunday October 22, 23:59
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Lecture 8 recap

Big-O notation

O(f (n)), Ω(f (n)) and Θ(f (n))

Solving recurrence equations:

Unrolling
T (n) = T (n − 1) + b.nk =⇒ T (n) = nk+1

T (n) = c .T (n − 1) + b.nk (c > 1) =⇒ T (n) = cn.
Master theorem
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Examples

Recall that O(f (n)) is the set of functions for which f is an upper
bound.

So 3n ∈ O(n) but also 3n ∈ O(n2), 3n ∈ O(n3), etc.

In particular 6n3 ∈ O(n3) and 3n ∈ O(n2) but

2n2 =
6n3

3n
/∈ O(

n3

n2
) = O(n).

Note that if f (n) ∈ O(h(n)) and g(n) ∈ O(k(n)) then
f (n)g(n) ∈ O(h(n)k(n)).
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Examples

3n. log(n) + 2n2 ∈ O(n2)
√

7n3 + 3n + 1 = (7n3 + 3n + 1)
1
2 ∈ O(n1.5)

(22.5)log(n) = (2log(n))2.5 = n2.5 ∈ O(n2.5)

5nlog(log(n)) /∈ O(nk) for any fixed k

n2/ log(n) ∈ O(n2−log(n)) ( O(n2)

6

Examples

3n. log(n) + 2n2 ∈ O(n2)
√

7n3 + 3n + 1 = (7n3 + 3n + 1)
1
2 ∈ O(n1.5)

(22.5)log(n) = (2log(n))2.5 = n2.5 ∈ O(n2.5)

5nlog(log(n)) /∈ O(nk) for any fixed k

n2/ log(n) ∈ O(n2−log(n)) ( O(n2)

7

Examples

3n. log(n) + 2n2 ∈ O(n2)
√

7n3 + 3n + 1 = (7n3 + 3n + 1)
1
2 ∈ O(n1.5)

(22.5)log(n) = (2log(n))2.5 = n2.5 ∈ O(n2.5)

5nlog(log(n)) /∈ O(nk) for any fixed k

n2/ log(n) ∈ O(n2−log(n)) ( O(n2)

8



Examples

3n. log(n) + 2n2 ∈ O(n2)
√

7n3 + 3n + 1 = (7n3 + 3n + 1)
1
2 ∈ O(n1.5)

(22.5)log(n) = (2log(n))2.5 = n2.5 ∈ O(n2.5)

5nlog(log(n)) /∈ O(nk) for any fixed k

n2/ log(n) ∈ O(n2−log(n)) ( O(n2)

9

Examples

3n. log(n) + 2n2 ∈ O(n2)
√

7n3 + 3n + 1 = (7n3 + 3n + 1)
1
2 ∈ O(n1.5)

(22.5)log(n) = (2log(n))2.5 = n2.5 ∈ O(n2.5)

5nlog(log(n)) /∈ O(nk) for any fixed k

n2/ log(n) ∈ O(n2−log(n)) ( O(n2)

10

Examples

3n. log(n) + 2n2 ∈ O(n2)
√

7n3 + 3n + 1 = (7n3 + 3n + 1)
1
2 ∈ O(n1.5)

(22.5)log(n) = (2log(n))2.5 = n2.5 ∈ O(n2.5)

5nlog(log(n)) /∈ O(nk) for any fixed k

n2/ log(n) ∈ O(n2−log(n)) ( O(n2)

11

Properties of O and Θ

(f , g) ∈ R if f ∈ O(g):

R is reflexive

R is transitive

R is not anti-symmetric: n ∈ O(2n) and 2n ∈ O(n) but
n 6= 2n.

(f , g) ∈ S if f ∈ Θ(g):

S is reflexive

S is transitive

S is symmetric
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Master Theorem

Theorem

Suppose T (n) is such that:

T (n) = dα · T
(n

d

)
+ Θ(nβ)

(case 1) α > β: T (n) = O(nα)

(case 2) α = β: T (n) = O(nα log n)

(case 3) α < β: T (n) = O(nβ)

Example

T (n) = 8T (n/2) + 2n3

d = 2, β = 3, α = 3, so Case 2 applies.

T (n) ∈ O(n3 log n)
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Graphs revisited

Recall in a graph G with n vertices and m edges:

m ≤ n2, so |E | ∈ O(|V |2)

If G is a tree then n = m + 1 so |E | ∈ O(|V |)
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Overview

1 Counting techniques

2 Basic and conditional probability

3 Expectation

4 Probability distributions

NB

Combinatorics and probability arise in many areas of Computer
Science, e.g.

Complexity of algorithms, data management

Reliability, quality assurance

Computer security

Data mining, machine learning, robotics
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Counting Techniques

General idea: find methods, algorithms or precise formulae to
count the number of elements in various sets or collections derived,
in a structured way, from some basic sets.

Examples

Single base set S = {s1, . . . , sn}, |S | = n; find the number of

all subsets of S

ordered selections of r different elements of S

unordered selections of r different elements of S

selections of r elements from S s.t. . . .

functions S −→ S (onto, 1-1)

partitions of S into k equivalence classes

graphs/trees with elements of S as labelled vertices/leaves
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Basic Counting Rules (1)

Union rule — S and T disjoint

|S ∪ T | = |S |+ |T |

S1, S2, . . . ,Sn pairwise disjoint (Si ∩ Sj = ∅ for i 6= j)

|S1 ∪ . . . ∪ Sn| =
∑
|Si |

Example

How many numbers in A = [1, 2, . . . , 999] are divisible by 31 or 41?

b999/31c = 32 divisible by 31
b999/41c = 24 divisible by 41
No number in A divisible by both
Hence, 32 + 24 = 56 divisible by 31 or 41
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Basic Counting Rules (2)
Product rule

|S1 × . . .× Sk | = |S1| · |S2| · · · |Sk | =
k∏

i=1

|Si |

If all Si = S (the same set) and |S | = m then |Sk | = mk

Example

Let Σ = {a, b, c, d , e, f , g}.
How many 5-letter words? How many with no letter repeated?

|Σ5| = |Σ|5 = 75 = 16, 807
4∏

i=0

(|Σ| − i) = 7 · 6 · 5 · 4 · 3 = 2, 520
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Exercises

S ,T finite. How many functions S −→ T are there?

|T ||S|

5.1.19 Consider a complete graph on n vertices.

(a) No. of paths of length 3
Take any vertex to start, then every next vertex different from the
preceding one. Hence n · (n − 1)3

(b) paths of length 3 with all vertices distinct
n(n − 1)(n − 2)(n − 3)

(c) paths of length 3 with all edges distinct
n(n − 1)(n − 2)2
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Basic Inferences

For arbitrary sets S ,T , . . .

|S ∪ T | = |S |+ |T | − |S ∩ T |
|T \ S | = |T | − |S ∩ T |

|S1 ∪ S2 ∪ S3| = |S1|+ |S2|+ |S3|
− |S1 ∩ S2| − |S1 ∩ S3| − |S2 ∩ S3|
+ |S1 ∩ S2 ∩ S3|
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Exercise

5.3.1 200 people. 150 swim or jog, 85 swim and 60 do both.
How many jog?

S – (set of) people who swim, J – people who jog
|S ∪ J| = |S |+ |J| − |S ∩ J|; thus 150 = 85 + |J| − 60 hence
|J| = 125; answer does not depend on the number of people overall

5.6.38 (Supp) There are 100 problems, 75 of which are ‘easy’ and
40 ‘important’.
What’s the smallest number of easy and important problems?

|E ∩ I | = |E |+ |I |− |E ∪ I | = 75 + 40−|E ∪ I | ≥ 75 + 40−100 = 15

23

Exercise

5.3.1 200 people. 150 swim or jog, 85 swim and 60 do both.
How many jog?

S – (set of) people who swim, J – people who jog
|S ∪ J| = |S |+ |J| − |S ∩ J|; thus 150 = 85 + |J| − 60 hence
|J| = 125; answer does not depend on the number of people overall

5.6.38 (Supp) There are 100 problems, 75 of which are ‘easy’ and
40 ‘important’.
What’s the smallest number of easy and important problems?

|E ∩ I | = |E |+ |I |− |E ∪ I | = 75 + 40−|E ∪ I | ≥ 75 + 40−100 = 15

24



Exercise
5.3.2 S = [100 . . . 999], thus |S | = 900.

(a) How many numbers have at least one digit that is a 3 or 7?
A3 = {at least one ‘3’}
A7 = {at least one ‘7’}

(A3 ∪ A7)c = { n ∈ [100, 999] : n digits ∈ {0, 1, 2, 4, 5, 6, 8, 9} }

7 choices for the first digit and 8 choices for the later digits

|(A3 ∪ A7)c | = |{1, 2, 4, 5, 6, 8, 9}| · |{0, 1, 2, 4, 5, 6, 8, 9}|2

Therefore |A3 ∪ A7| = 900− 448 = 452

(b) How many numbers have a 3 and a 7?
|A3 ∩ A7| = |A3|+ |A7| − |A3 ∪ A7| =
(900− 8 · 9 · 9) + (900− 8 · 9 · 9)− 452 = 2 · 252− 452 = 52
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Corollaries

If |S ∪ T | = |S |+ |T | then S and T are disjoint

If |⋃n
i=1 Si | =

∑n
i=1 |Si | then Si are pairwise disjoint

If |T \ S | = |T | − |S | then S ⊆ T

These properties can serve to identify cases when sets are disjoint
(resp. one is contained in the other).

Proof.

|S |+ |T | = |S ∪ T | means |S ∩ T | = |S |+ |T | − |S ∪ T | = 0

|T \ S | = |T | − |S | means |S ∩ T | = |S | means S ⊆ T
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Combinatorial Objects: How Many?

permutations
Ordering of all objects from a set S ; equivalently: Selecting all
objects while recognising the order of selection.
The number of permutations of n elements is

n! = n · (n − 1) · · · 1, 0! = 1! = 1

r-permutations
Selecting any r objects from a set S of size n without repetition
while recognising the order of selection.
Their number is

Π(n, r) = n · (n − 1) · · · (n − r + 1) =
n!

(n − r)!
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r-selections (or: r-combinations)
Collecting any r distinct objects without repetition;
equivalently: selecting r objects from a set S of size n and not
recognising the order of selection.
Their number is

(
n

r

)
=

n!

(n − r)!r !
=

n · (n − 1) · · · (n − r + 1)

1 · 2 · · · r

NB

These numbers are usually called binomial coefficients due to

(a+b)n = an+

(
n

1

)
an−1b+

(
n

2

)
an−2b2+. . .+bn =

n∑

i=0

(
n

i

)
an−ibi

Also defined for any α ∈ R as

(
α

r

)
=
α(α− 1) · · · (α− r + 1)

r !
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Simple Counting Problems

Example

5.1.2 Give an example of a counting problem whose answer is

(a) Π(26, 10)

(b)
(26

10

)

Draw 10 cards from a half deck (eg. black cards only)
(a) the cards are recorded in the order of appearance
(b) only the complete draw is recorded

Examples

Number of edges in a complete graph Kn

Number of diagonals in a convex polygon

Number of poker hands

Decisions in games, lotteries etc.
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Exercise

5.1.6 From a group of 12 men and 16 women, how many
committees can be chosen consisting of

(a) 7 members?
(12+16

7

)

(b) 3 men and 4 women?
(12

3

)(16
4

)

(c) 7 women or 7 men?
(12

7

)
+
(16

7

)

5.1.7 As above, but any 4 people (male or female) out of 9 and
two, Alice and Bob, unwilling to serve on the same committee.

{all committees} − {committees with both A and B}
=
(9

4

)
−
(7

2

)
= 126− 21 = 105

equivalently, {A in, B out} + {A out, B in} + {none in}
=
(7

3

)
+
(7

3

)
+
(7

4

)
= 35 + 35 + 35 = 105
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Counting Poker Hands

5.1.15 A poker hand consists of 5 cards drawn without
replacement from a standard deck of 52 cards

{A, 2-10, J,Q,K} × {club, spade, heart, diamond}

(a) Number of “4 of a kind” hands (e.g. 4 Jacks)
|rank of the 4-of-a-kind| · |any other card| = 13 · (52− 4)

(b) Number of non-straight flushes, i.e. all cards of same suit but
not consecutive (e.g. 8,9,10,J,K)
|all flush| − |straight flush|
= |suit| · |5-hand in a given suit| −

|suit| · |rank of a straight flush in a given suit|
= 4 ·

(13
5

)
− 4 · 10
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“Balls in boxes”

Example

Have n “distinguishable” boxes.
Have k ≤ n balls which are either:

1 Indistinguishable

2 Distinguishable

How many ways to place balls in boxes with at most one ball per
box?

NB

Case 2 is the same as the number of injections from K to N where
|K | = k and |N| = n.
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“Balls in boxes”

Example

Have n “distinguishable” boxes.
Have k ≤ n balls which are either:

1 Indistinguishable

2 Distinguishable

How many ways to place balls in boxes with at most one ball per
box?

1
(n
k

)

2 Π(n, k)
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“Balls in boxes” continued

Example

Have n “distinguishable” boxes.
Have k balls which are either:

1 Indistinguishable

2 Distinguishable

How many ways to place balls in boxes with any number of balls
per box?

1
(n+k−1

k

)
=
(n+k−1

n−1

)

2 Π(n + k − 1, k)

38

“Balls in boxes” continued
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“Balls in boxes” continued

Example

Have n “distinguishable” boxes.
Have k ≥ n balls which are either:

1 Indistinguishable

2 Distinguishable

How many ways to place balls in boxes with at least one ball per
box?

NB

UPDATE (10/10) Case 2 is NOT the same as the number of
surjections from K to N where |K | = k and |N| = n
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“Balls in boxes” continued

Example

Have n “distinguishable” boxes.
Have k ≥ n balls which are either:

1 Indistinguishable

2 Distinguishable

How many ways to place balls in boxes with at least one ball per
box?
Place n balls in boxes. Distribute remaining k − n balls however.

1
(n+(k−n)−1

n−1

)
=
(k−1
n−1

)

2
(k−1
n−1

)
.k!
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“Balls in boxes” continued

Example

Have n “distinguishable” boxes.
Have k “distinguishable” and “replaceable” balls (i.e. many copies)
How many ways to place balls in boxes with exactly one ball per
box?

NB

This is the same as the number of functions from K to N where
|K | = k and |N| = n.
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“Balls in boxes” continued

Example

Have n “distinguishable” boxes.
Have k “distinguishable” and “replaceable” balls (i.e. many copies)
How many ways to place balls in boxes with exactly one ball per
box?

nk
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Difficult Counting Problems

Example (Ramsay numbers)

An example of a Ramsay number is R(3, 3) = 6, meaning that

“K6 is the smallest complete graph s.t. if all edges are
painted using two colours, then there must be at least
one monochromatic triangle”

This serves as the basis of a game called S-I-M (invented by
Simmons), where two adversaries connect six dots, respectively
using blue and red lines. The objective is to avoid closing a
triangle of one’s own colour. The second player has a winning
strategy, but the full analysis requires a computer program.
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Using Programs to Count

Two dice, a red die and a black die, are rolled.
(Note: one die, two or more dice)

Write a program to list all the pairs {(R,B) : R > B}

Similarly, for three dice, list all triples R > B > G

Generally, for n dice, all of which are m-sided (n ≤ m), list all
decreasing n-tuples

NB

In order to just find the number of such n-tuples, it is not
necessary to list them all. One can write a recurrence relation for
these numbers and compute (or try to solve) it.
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Approximate Counting

NB

A Count may be a precise value or an estimate.

The latter should be asymptotically correct or at least give a good
asymptotic bound, whether upper or lower. If S is the base set,
|S | = n its size, and we denote by c(S) some collection of objects
from S we are interested in, then we seek constants a, b s.t.

a ≤ lim
n→∞

est(|c(S)|)
|c(S)| ≤ b

46

Probability

47

Elementary Probability
Definition

Sample space:
Ω = {ω1, . . . , ωn}

Each point represents an outcome.

Event: a collection of outcomes = subset of Ω

Probability distribution: A function P : Pow(Ω)→ R such that:

P(Ω) = 1

E and F disjoint events then P(E ∪ F ) = P(E ) + P(F ).

Fact

P(∅) = 0, P(E c) = 1− P(E )
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Elementary Probability

Each outcome ωi equally likely:

P(ω1) = P(ω2) = . . . = P(ωn) =
1

n

This a called a uniform probability distribution over Ω

Examples

Tossing a coin: Ω = {H,T}
P(H) = P(T ) = 0.5

Rolling a die: Ω = {1, 2, 3, 4, 5, 6}

P(1) = P(2) = P(3) = P(4) = P(5) = P(6) =
1

6
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Exercises

5.2.7 Suppose an experiment leads to events A,B with
probabilities P(A) = 0.5,P(B) = 0.8,P(A ∩ B) = 0.4.
Find

P(Bc) = 1− P(B) = 0.2

P(A ∪ B) = P(A) + P(B)− P(A ∩ B) = 0.9

P(Ac ∪ Bc) = 1− P((Ac ∪ Bc)c) = 1− P(A ∩ B) = 0.6

5.2.8 Given P(A) = 0.6, P(B) = 0.7, show P(A ∩ B) ≥ 0.3

P(A ∩ B) = P(A) + P(B)− P(A ∪ B)
= 0.6 + 0.7− P(A ∪ B)
≥ 0.6 + 0.7− 1 = 0.3
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Computing Probabilities by Counting

Computing probabilities with respect to a uniform distribution
comes down to counting the size of the event.
If E = {e1, . . . , ek} then

P(E ) =
k∑

i=1

P(ei ) =
k∑

i=1

1

|Ω| =
|E |
|Ω|

Most of the counting rules carry over to probabilities wrt. a
uniform distribution.

NB

The expression “selected at random”, when not further qualified,
means:
“subject to / according to / . . . a uniform distribution.”
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Examples
5.6.38 (Supp) Of 100 problems, 75 are ‘easy’ and 40 ‘important’.

(b) n problems chosen randomly. What is the probability that all n
are important?

p =

(40
n

)
(100

n

) =
40 · 39 · · · (41− n)

100 · 99 · · · (101− n)

5.2.3 A 4-letter word is selected at random from Σ4, where
Σ = {a, b, c , d , e}. What is the probability that
(a) the letters in the word are all distinct?
(b) there are no vowels (“a”, “e”) in the word?
(c) the word begins with a vowel?

(a) |E | = Π(5, 4), P(E ) = 5·4·3·2
54 = 120

625 ≈ 19%

(b) |E | = 34, P(E ) = 81
625 ≈ 13%

(c) |E | = 2 · 53, P(E ) = 2
5

53

Examples
5.6.38 (Supp) Of 100 problems, 75 are ‘easy’ and 40 ‘important’.

(b) n problems chosen randomly. What is the probability that all n
are important?

p =

(40
n

)
(100

n

) =
40 · 39 · · · (41− n)

100 · 99 · · · (101− n)

5.2.3 A 4-letter word is selected at random from Σ4, where
Σ = {a, b, c , d , e}. What is the probability that
(a) the letters in the word are all distinct?
(b) there are no vowels (“a”, “e”) in the word?
(c) the word begins with a vowel?

(a) |E | = Π(5, 4), P(E ) = 5·4·3·2
54 = 120

625 ≈ 19%

(b) |E | = 34, P(E ) = 81
625 ≈ 13%

(c) |E | = 2 · 53, P(E ) = 2
5
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Exercise
5.2.11 Two dice, a red die and a black die, are rolled.

What is the probability that
(a) the sum of the values is even?
P
(
R + B ∈ {2, 4, . . . , 12}

)
= 18

36 = 1
2

(b) the number on the red die is bigger than on the black die?
P(R > B) = P(R < B); also P(R = B) = 1

6
Therefore P(R < B) = 1

2 (1− P(R = B)) = 5
12

(c) the number on the black die is twice the one on the red die?
P(R = 2 · B) = P({(2, 1), (4, 2), (6, 3)}) = 3

36 = 1
12

5.2.12 (a) the maximum of the numbers is 4? P(E1) = 7
36

(b) their minimum is 4? P(E2) = 5
36

Check:

P(E1 ∪ E2) = 7
36 + 5

36 − P(E1 ∩ E2) = 7+5−1
36 = 11

36

P(at least one ‘4’) = 1− P(no ‘4’) = 1− 5
6 · 5

6 = 11
36
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Exercise

5.2.5 An urn contains 3 red and 4 black balls. 3 balls are
removed without replacement. What are the probabilities that
(a) all 3 are red
(b) all 3 are black
(c) one is red, two are black

All probabilities are computed using the same sample space: all
possible ways to draw three balls without replacement.

The size of the sample space is
7 · 6 · 5

3!
= 35

(a) E = All balls are red: 1 combination
(b) E = All balls are black:

(4
3

)
= 4 combinations

(c) E = One red and two black:
(3

1

)
·
(4

2

)
= 18 combinations
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Infinite sample spaces

Probability distributions generalize to infinite sample spaces with
some provisos.

In continuous spaces (e.g. R):

Probability distributions are measures;
Sums are integrals;
Non-zero probabilities apply to ranges;
Probability of a single event is 0. Note: Probability 0 is not
the same as impossible.

In discrete spaces (e.g. N):

Probability 0 is the same as impossible.
No uniform distribution!
Non-uniform distributions exist, e.g. P(0) = 1, P(n) = 0 for
n > 0; or P(0) = 0, P(n) = 1

2n for n > 0.
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Asymptotic Estimate of Relative Probabilities

Example

Event A
def
= one die rolled n times and you obtain two 6’s

Event B
def
= n dice rolled simultaneously and you obtain one 6

P(A) =

(n
2

)
· 5n−2

6n
P(B) =

(n
1

)
· 5n−1

6n

Therefore P(A)
P(B) =

(n2)
(n1)
· 1

5 = n(n−1)
2 · 1

5n = n−1
10 ∈ Θ(n)

n 1 2 3 4 . . . 11 . . . 20 . . .

P(A) 0 1
36

5
72

25
216 . . . 0.296 . . . 0.198 . . .

P(B) 1
6

10
36

25
72

125
324 . . . 0.296 . . . 0.104 . . .
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Inclusion-Exclusion
This is one of the most universal counting procedures. It allows
you to compute the size of

A1 ∪ . . . ∪ An

from the sizes of all possible intersections

Ai1 ∩ Ai2 ∩ . . . ∩ Aik , ai1 < ai2 < . . . < aik

Two sets |A ∪ B| = |A|+ |B| − |A ∩ B|
Three sets |A ∪ B ∪ C | = |A|+ |B|+ |C |

−|A ∩ B| − |A ∩ C | − |B ∩ C |
+|A ∩ B ∩ C |

NB

Inclusion-exclusion is often applied informally without making clear
or explicit why certain quantities are subtracted or put back in.
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Interpretation

Each Ai defined as the set of objects that satisfy some property Pi

Ai = { x ∈ X : Pi (x) }

Union A1 ∪ . . . ∪ An is the set of objects that satisfy at least one
property Pi

A1 ∪ . . . ∪ An = { x ∈ X : P1(x) ∨ P2(x) ∨ . . . ∨ Pn(x) }

Intersection Ai1 ∩ . . . ∩ Air is the set of objects that satisfy all
properties Pi1 , . . . ,Pir

Ai1 ∩ . . . ∩ Air = { x ∈ X : Pi1(x) ∧ Pi2(x) ∧ . . . ∧ Pir (x) }

Special case r = 1: Ai1 = {x ∈ X : Pi1(x)}
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Inclusion-Exclusion is a very common method for deriving
probabilities from other probabilities.

Two sets

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

Three sets

P(A ∪ B ∪ C ) = P(A ∪ B) + P(C )− P((A ∪ B) ∩ C )

= P(A) + P(B)− P(A ∩ B) + P(C )

− P((A ∩ C ) ∪ (B ∩ C ))

= P(A) + P(B)− P(A ∩ B) + P(C )

−
(
P(A ∩ C ) + P(B ∩ C )− P(A ∩ C ∩ B ∩ C )

)

= P(A) + P(B) + P(C )

− P(A ∩ C )− P(A ∩ C )− P(B ∩ C )

+ P(A ∩ B ∩ C )
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Example

A four-digit number n is selected at random (i.e. randomly from
[1000 . . . 9999]). Find the probability p that n has each of 0, 1, 2
among its digits.

Let q = 1− p be the complementary probability and define

Ai = {n : no digit i},Aij = {n : no digits i , j},Aijk = {n : no i , j , k}

Then define
T = A0 ∪ A1 ∪ A2 = {n : missing at least one of 0, 1, 2}
S = (A0 ∪ A1 ∪ A2)c = {n : containing each of 0, 1, 2}
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Example (cont’d)

Once we find the cardinality of T , the solution is

q =
|T |

9000
, p = 1− q

To find |Ai |, |Aij |, |Aijk | we reflect on how many choices are
available for the first digit, for the second etc. A special case is the
leading digit, which must be 1, . . . , 9
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Example (cont’d)

|A0| = 94, |A1| = |A2| = 8 · 93

|A01| = |A02| = 84, |A12| = 7 · 83

|A012| = 74

|T | = |A0 ∪ A1 ∪ A2|
= |A0|+ |A1|+ |A2| − |A0 ∩ A1| − |A0 ∩ A2| − |A1 ∩ A2|

+ |A0 ∩ A1 ∩ A2|
= 94 + 2 · 8 · 93 − 2 · 84 − 7 · 83 + 74

= 25 · 93 − 23 · 83 + 74 = 8850

q =
8850

9000
, p = 1− q ≈ 0.01667
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Previous example generalised: Probability of an r -digit number
having all of 0,1,2,3 among its digits.
We use the previous notation: Ai — set of numbers n missing
digit i , and similarly for all Aij ...

We aim to find the size of T = A0 ∪ A1 ∪ A2 ∪ A3, and then to
compute |S | = 9 · 10r−1 − |T |.

|A0 ∪ A1 ∪ A2 ∪ A3| = sum of |Ai |
− sum of |Ai ∩ Aj |
+ sum of |Ai ∩ Aj ∩ Ak |
− sum of |Ai ∩ Aj ∩ Ak ∩ Al |
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Probability of Sequential Outcomes

Example

Team A has probability p = 0.5 of winning a game against B.
What is the probability Pp of A winning a best-of-seven match if
(a) A already won the first game?
(b) A already won the first two games?
(c) A already won two out of the first three games?

(a) Sample space S — 6-sequences, formed from wins (W) and
losses (L)

|S | = 26 = 64

Favourable sequences F — those with three to six W

|F | =

(
6

3

)
+

(
6

4

)
+

(
6

5

)
+

(
6

6

)
= 20 + 15 + 6 + 1 = 42

Therefore P0.5 = 42
64 ≈ 66%

68



Probability of Sequential Outcomes

Example

Team A has probability p = 0.5 of winning a game against B.
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|S | = 26 = 64

Favourable sequences F — those with three to six W

|F | =

(
6

3
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+
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6

4

)
+

(
6

5

)
+

(
6

6

)
= 20 + 15 + 6 + 1 = 42

Therefore P0.5 = 42
64 ≈ 66%
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Example (cont’d)

(b) Sample space S — 5-sequences of W and L

|S | = 25 = 32

Favourable sequences F — those with two to five W

|F | =

(
5

2

)
+

(
5

3

)
+

(
5

4

)
+

(
5

5

)
= 10 + 10 + 5 + 1 = 26

Therefore P0.5 = 26
32 ≈ 81%

(c)
|S | = 24 = 16

|F | =

(
4

2

)
+

(
4

3

)
+

(
4

4

)
= 6 + 4 + 1 = 11

Therefore P0.5 = 11
16 ≈ 69%
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Example (cont’d)

Redo for arbitrary p
(a)

Pp =

(
6

3

)
p3(1− p)3 +

(
6

4

)
p4(1− p)2 +

(
6

5

)
p5(1− p) +

(
6

6

)
p6

(b)

Pp =

(
5

2

)
p2(1− p)3 +

(
5

3

)
p3(1− p)2 +

(
5

4

)
p5(1− p) +

(
5

5

)
p5

(c)

Pp =

(
4

2

)
p2(1− p)2 +

(
4

3

)
p3(1− p) +

(
4

4

)
p4
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Use of Recursion in Probability Computations

Question

Given n tosses of a coin, what is the probability of two heads in a
row? Compute for n = 5, 10, 20, . . .

Approaches:

I. Write down all possibilities — 32 for n = 5, 1024 for n = 10, . . .

II. Write a program; running time O(2n) — why?

III. Inter-relate the numbers of relevant possibilities

Nn
def
= No. of sequences of n tosses without . . . HH. . . pattern

Initial values:
N0 = 1, N1 = 2, N2 = 3 (all except ”HH”)
N3 = 5 (why?) N4 = 8 (why?)
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Answer

We can summarise all possible outcomes in a recursive tree

first toss

second toss

two heads in

a row

N
n−2

N
n−1

T H

T

H

Nn = Nn−1 + Nn−2 — Fibonacci recurrence: Nn = fib(n + 1)

Nn ≈ 1√
5

(√
5+1
2

)n+1
≈ 0.72 · (1.6)n

pn = 2n−fib(n+1)
2n ≈ 1− 0.72 · (0.8)n
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Example

Question

Given n tosses, what is the probability qn of at least one HHH?

q0 = q1 = q2 = 0; q3 = 1
8

Then recursive computation:

qn =
1

2
qn−1 (initial: T)

+
1

4
qn−2 (initial: HT)

+
1

8
qn−3 (initial: HHT)

+
1

8
(start with: HHH)
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Example
Question

A coin is tossed ‘indefinitely’. Which pattern is more likely (and by
how much) to appear first, HTH or HHT?

let p = P(HTH first)

p = 1
8 + 1

8 p + 1
2 p → 3

8 p = 1
8 → p = 1

3

NB

Probability that either pattern would appear at a given,
prespecified point in the sequence of tosses is, obviously, the same.

76



Example
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Example

Question

Two dice are rolled repeatedly. What is the probability that ‘6–6’
will occur before two consecutive (back-to-back) ‘totals seven’?

NB

The probability of either occurring at a given roll is the same: 1
36 .

Let p = P(6–6 first)

6−6

6−6

seven (1/6)

neutral (29/36)

seven
neutral

1/36

1/36 p

p

p = 1
36 + 1

6 · 1
36 + 1

6 · 29
36 p + 29

36 p → 216p = 7 + 203p → p = 7
13
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NB

The majority of problems in probability and statistics do not have
such elegant solutions. Hence the use of computers for either
precise calculations or approximate simulations is mandatory.
However, it is the use of recursion that simplifies such computing
or, quite often, makes it possible in the first place.
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Conditional Probability

81

Conditional Probability

Definition

Conditional probability of E given S :

P(E |S) =
P(E ∩ S)

P(S)
, E ,S ⊆ Ω

It is defined only when P(S) 6= 0

NB

P(A|B) and P(B|A) are, in general, not related — one of these
values predicts, by itself, essentially nothing about the other.
The only exception, applicable when P(A),P(B) 6= 0, is that
P(A|B) = 0 iff P(B|A) = 0 iff P(A ∩ B) = 0.
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If P is the uniform distribution over a finite set Ω, then

P(E |S) =

|E∩S |
|Ω|
|S |
|Ω|

=
|E ∩ S |
|S |

This observation can help in calculations...

Example

9.1.6 A coin is tossed four times. What is the probability of
(a) two consecutive heads
(b) two consecutive heads given that ≥ 2 tosses are heads

T T T T H T T T
T T T H H T T H
T T H T H T H T
T T H H H T H H
T H T T H H T T
T H T H H H T H
T H H T H H H T
T H H H H H H H

(a) 8
16 (b) 8

11
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Some General Rules

Fact

A ⊆ B → P(A|B) ≥ P(A)

A ⊆ B → P(B|A) = 1

P(A ∩ B|B) = P(A|B)

P(∅|A) = 0 for A 6= ∅
P(A|Ω) = P(A)

P(Ac |B) = 1− P(A|B)

NB

P(A|B) and P(A|Bc) are not related

P(A|B),P(B|A),P(Ac |Bc),P(Bc |Ac) are not related
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Example

Two dice are rolled and the outcomes recorded as b for the black
die, r for the red die and s = b + r for their total.
Define the events B = {b ≥ 3}, R = {r ≥ 3}, S = {s ≥ 6}.

P(S |B) = 4+5+6+6
24 = 21

24 = 7
8 = 87.5%

P(B|S) = 4+5+6+6
26 = 21

26 = 80.8%

The (common) numerator 4 + 5 + 6 + 6 = 21 represents the size of
the B ∩ S — the common part of B and S , that is, the number of
rolls where b ≥ 3 and s ≥ 6. It is obtained by considering the
different cases: b = 3 and s ≥ 6, then b = 4 and s ≥ 6 etc.

The denominators are |B| = 24 and |S | = 26
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Example (cont’d)

Recall: B = {b ≥ 3}, R = {r ≥ 3}, S = {s ≥ 6}

P(B) = P(R) = 2/3 = 66.7%

P(S) = 5+6+5+4+3+2+1
36 = 26

36 = 72.22%

P(S |B ∪ R) = 2+3+4+5+6+6
32 = 26

32 = 81.25%

The set B ∪ R represents the event ‘b or r ’.
It comprises all the rolls except for those with both the red and the
black die coming up either 1 or 2.

P(S |B ∩ R) = 1 = 100% — because S ⊇ B ∩ R
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Exercise
9.1.9 Consider three red and eight black marbles; draw two

without replacement. We write b1 — Black on the first draw,
b2 — Black on the second draw, r1 — Red on first draw,
r2 — Red on second draw
Find the probabilities
(a) both Red:

P(r1 ∧ r2) = P(r1)P(r2|r1) =
3

11
· 2

10
=

3

55

Equivalently:
|two-samples| =

(11
2

)
= 55; |Red two-samples| =

(3
2

)
= 3

P(·) =
(3

2)
(11

2 )
= 3

55

(b) both Black:

P(b1 ∧ b2) = P(b1)P(b2|b1) =
8

11
· 7

10
=

28

55
=

(8
2

)
(11

2

)
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(c) one Red, one Black:

P(r1 ∧ b2) + P(b1 ∧ r2) =
3 · 8(11

2

) — why?

By textbook (the ‘hard way’)

P(r1 ∧ b2) + P(b1 ∧ r2) =
3

11
· 8

10
+

8

11
· 3

10

or

P(·) = 1− P(r1 ∧ r2)− P(b1 ∧ b2) =
55− 3− 28

55
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Exercise

9.1.12 What is the probability of a flush given that all five cards
in a Poker hand are red?

Red cards = ♦’s + ♥’s
flush = all cards of the same suit

P(flush | all five cards are Red) =
2 ·
(13

5

)
(26

5

) =
9

230
≈ 4%
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Exercise

9.1.22 Prove the following:
If P(A|B) > P(A) (“positive correlation”) then P(B|A) > P(B)

P(A|B) > P(A)

→ P(A ∩ B) > P(A)P(B)

→ P(A∩B)
P(A) > P(B)

→ P(B|A) > P(B)
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Stochastic Independence

Definition

A and B are stochastically independent (notation: A⊥B) if
P(A ∩ B) = P(A) · P(B)

If P(A) 6= 0 and P(B) 6= 0, all of the following are equivalent
definitions:

P(A ∩ B) = P(A)P(B)

P(A|B) = P(A)

P(B|A) = P(B)

P(Ac |B) = P(Ac) or P(A|Bc) = P(A) or P(Ac |Bc) = P(Ac)

The last one claims that

A⊥B ↔ Ac⊥B ↔ A⊥Bc ↔ Ac⊥Bc
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Basic non-independent sets of events

A ⊆ B

A ∩ B = ∅
Any pair of one-point events {x}, {y}:
either x = y and P(x |y) = 1
or x 6= y and P(x |y) = 0

Independence of A1, . . . ,An

P(Ai1 ∩ Ai2 ∩ . . . ∩ Aik ) = P(Ai1) · P(Ai2) · · ·P(Aik )

for all possible collections Ai1 ,Ai2 , . . . ,Aik .
This is often called (for emphasis) a full independence
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for all possible collections Ai1 ,Ai2 , . . . ,Aik .
This is often called (for emphasis) a full independence
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Pairwise independence is a weaker concept.

Example

Toss of two coins
A = 〈first coin H〉
B = 〈second coin H〉
C = 〈exactly one H〉

}
P(A) = P(B) = P(C ) = 1

2
P(A ∩ B) = P(A ∩ C ) = P(B ∩ C ) = 1

4
However: P(A ∩ B ∩ C ) = 0

One can similarly construct a set of n events where any k of them
are independent, while any k + 1 are dependent (for k < n).

Independence of events, even just pairwise independence, can
greatly simplify computations and reasoning in AI applications. It
is common for many expert systems to make an approximating
assumption of independence, even if it is not completely satisfied.

P(senset | loct , senset−1, loct−1, . . .) = P(senset | loct)
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Exercise

9.1.7 Suppose that an experiment leads to events A, B and C
with P(A) = 0.3, P(B) = 0.4 and P(A ∩ B) = 0.1

(a) P(A|B) = P(A∩B)
P(B) = 1

4

(b) P(Ac) = 1− P(A) = 0.7

(c) Is A⊥B ? No. P(A) · P(B) = 0.12 6= P(A ∩ B)

(d) Is Ac⊥B ? No, as can be seen from (c).

Note: P(Ac ∩ B) = P(B)− P(A ∩ B) = 0.4− 0.1 = 0.3
P(Ac) · P(B) = 0.7 · 0.4 = 0.28
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Exercise

9.1.8 Given A⊥B, P(A) = 0.4, P(B) = 0.6

P(A|B) = P(A) = 0.4

P(A ∪ B) = P(A) + P(B)− P(A)P(B) = 0.76

P(Ac ∩ B) = P(Ac)P(B) = 0.36
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Exercise

9.1.25 Does A⊥B⊥C imply (A ∩ B)⊥(A ∩ C ) ?

No; this is almost never the case.
If somehow (A ∩ B)⊥(A ∩ C ) then it would give

P(A ∩ B ∩ C ) = P(A ∩ B ∩ A ∩ C ) = P(A ∩ B) · P(A ∩ C )

As A is independent of B and of C it would suggest

P(A ∩ B ∩ C )
?
= P(A) · P(B) · P(A) · P(C )

instead of the correct

P(A ∩ B ∩ C ) = P(A) · P(B) · P(C )
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Supplementary Exercise

9.5.5 (Supp) We are given two events with P(A) = 1
4 , P(B) = 1

3 .
True, false or could be either?

(a) P(A ∩ B) = 1
12 — possible; it holds when A⊥B

(b) P(A ∪ B) = 7
12 — possible; it holds when A,B are disjoint

(c) P(B|A) = P(B)
P(A) — false; correct is: P(B|A) = P(B∩A)

P(A)

(d) P(A|B) ≥ P(A) — possible (it means that B “supports” A)

(e) P(Ac) = 3
4 — true, since P(Ac) = 1− P(A)

(f) P(A) = P(B)P(A|B) + P(Bc)P(A|Bc) — true
(also known as total probability)
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Expectation
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Random Variables

Definition

An (integer) random variable is a function from Ω to Z.
In other words, it associates a number value with every outcome.

Random variables are often denoted by X ,Y ,Z , . . .

Example

Random variable Xs
def
= sum of rolling two dice

Ω = {(1, 1), (1, 2), . . . , (6, 6)}
Xs((1, 1)) = 2 Xs((1, 2)) = 3 = Xs((2, 1)) . . .

9.3.3 Buy one lottery ticket for $1. The only prize is $1M.

Ω = {win, lose} XL(win) = $999, 999 XL(lose) = −$1
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Expectation
Definition

The expected value (often called “expectation” or “average”) of
a random variable X is

E (X ) =
∑

k∈Z
P(X = k) · k

Example

The expected sum when rolling two dice is

E (Xs) =
1

36
· 2 +

2

36
· 3 + . . .+

6

36
· 7 + . . .+

1

36
· 12 = 7

9.3.3 Buy one lottery ticket for $1. The only prize is $1M. Each
ticket has probability 6 · 10−7 of winning.

E (XL) = 6 · 10−7 · $999, 999 + (1− 6 · 10−7) · −$1 = −$0.4
109

NB

Expectation is a truly universal concept; it is the basis of all
decision making, of estimating gains and losses, in all actions
under risk. Historically, a rudimentary concept of expected value
arose long before the notion of probability.

Theorem (linearity of expected value)

E (X + Y ) = E (X ) + E (Y )
E (c · X ) = c · E (X )

Example

The expected sum when rolling two dice can be computed as

E (Xs) = E (X1) + E (X2) = 3.5 + 3.5 = 7

since E (Xi ) = 1
6 · 1 + 1

6 · 2 + . . .+ 1
6 · 6, for each die Xi
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Example

E (Sn), where Sn
def
= |no. of heads in n tosses|

‘hard way’

E (Sn) =
∑n

k=0 P(Sn = k) · k =
∑n

k=0
1
2n

(n
k

)
· k

since there are
(n
k

)
sequences of n tosses with k heads,

and each sequence has the probability 1
2n

= 1
2n
∑n

k=1
n
k

(n−1
k−1

)
k = n

2n
∑n−1

k=0

(n−1
k

)
= n

2n · 2n−1 = n
2

using the ‘binomial identity’
∑n

k=0

(n
k

)
= 2n

‘easy way’

E (Sn) = E (S1
1 + . . .+ Sn

1 ) =
∑

i=1...n E (S i
1) = nE (S1) = n · 1

2

Note: Sn
def
= |heads in n tosses| while each S i

1
def
= |heads in 1 toss|

111

Example

E (Sn), where Sn
def
= |no. of heads in n tosses|

‘hard way’

E (Sn) =
∑n

k=0 P(Sn = k) · k =
∑n

k=0
1
2n

(n
k

)
· k

since there are
(n
k

)
sequences of n tosses with k heads,

and each sequence has the probability 1
2n

= 1
2n
∑n

k=1
n
k

(n−1
k−1

)
k = n

2n
∑n−1

k=0

(n−1
k

)
= n

2n · 2n−1 = n
2

using the ‘binomial identity’
∑n

k=0

(n
k

)
= 2n

‘easy way’

E (Sn) = E (S1
1 + . . .+ Sn

1 ) =
∑

i=1...n E (S i
1) = nE (S1) = n · 1

2

Note: Sn
def
= |heads in n tosses| while each S i

1
def
= |heads in 1 toss|

112



Example

E (Sn), where Sn
def
= |no. of heads in n tosses|

‘hard way’

E (Sn) =
∑n

k=0 P(Sn = k) · k =
∑n

k=0
1
2n

(n
k

)
· k

since there are
(n
k

)
sequences of n tosses with k heads,

and each sequence has the probability 1
2n

= 1
2n
∑n

k=1
n
k

(n−1
k−1

)
k = n

2n
∑n−1

k=0

(n−1
k

)
= n

2n · 2n−1 = n
2

using the ‘binomial identity’
∑n

k=0

(n
k

)
= 2n

‘easy way’

E (Sn) = E (S1
1 + . . .+ Sn

1 ) =
∑

i=1...n E (S i
1) = nE (S1) = n · 1

2

Note: Sn
def
= |heads in n tosses| while each S i

1
def
= |heads in 1 toss|

113

NB

If X1,X2, . . . ,Xn are independent, identically distributed random
variables, then E (X1 + X2 + . . .+ Xn) happens to be the same as
E (nX1), but these are very different random variables.
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Example

You face a quiz consisting of six true/false questions, and your
plan is to guess the answer to each question (randomly, with
probability 0.5 of being right). There are no negative marks, and
answering four or more questions correctly suffices to pass.
What is the probability of passing and what is the expected score?

To pass you would need four, five or six correct guesses. Therefore,

p(pass) =

(6
4

)
+
(6

5

)
+
(6

6

)

64
=

15 + 6 + 1

64
≈ 34%

The expected score from a single question is 0.5, as there is no
penalty for errors. For six questions the expected value is 6 ·0.5 = 3

115

Example

You face a quiz consisting of six true/false questions, and your
plan is to guess the answer to each question (randomly, with
probability 0.5 of being right). There are no negative marks, and
answering four or more questions correctly suffices to pass.
What is the probability of passing and what is the expected score?

To pass you would need four, five or six correct guesses. Therefore,

p(pass) =

(6
4

)
+
(6

5

)
+
(6

6

)

64
=

15 + 6 + 1

64
≈ 34%

The expected score from a single question is 0.5, as there is no
penalty for errors. For six questions the expected value is 6 ·0.5 = 3

116



Exercise

9.3.7
An urn has m + n = 10 marbles, m ≥ 0 red and n ≥ 0 blue.
7 marbles selected at random without replacement.
What is the expected number of red marbles drawn?

(m
0

)(n
7

)
(10

7

) · 0 +

(m
1

)(n
6

)
(10

7

) · 1 +

(m
2

)(n
5

)
(10

7

) · 2 + . . .+

(m
7

)(n
0

)
(10

7

) · 7

e.g. (5
2

)(5
5

)
(10

7

) · 2 +

(5
3

)(5
4

)
(10

7

) · 3 +

(5
4

)(5
3

)
(10

7

) · 4 +

(5
5

)(5
2

)
(10

7

) · 5

=
10

120
· 2 +

50

120
· 3 +

50

120
· 4 +

10

120
· 5 =

420

120
= 3.5
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Example

Find the average waiting time for the first head, with no upper
bound on the ‘duration’ (one allows for all possible sequences of
tosses, regardless of how many times tails occur initially).

A = E (Xw ) =
∑∞

k=1 k · P(Xw = k) =
∑∞

k=1 k 1
2k

= 1
21 + 2

22 + 3
23 + . . .

This can be evaluated by breaking the sum into a sequence of
geometric progressions

1

2
+

2

22
+

3

23
+ . . .

=

(
1

2
+

1

22
+

1

23
+ . . .

)
+

(
1

22
+

1

23
+ . . .

)
+

(
1

23
+ . . .

)
+ . . .

= 1 +
1

2
+

1

22
+ . . . = 2
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There is also a recursive ‘trick’ for solving the sum

A =
∞∑

k=1

k

2k
=
∞∑

k=1

k − 1

2k
+
∞∑

k=1

1

2k
=

1

2

∞∑

k=1

k − 1

2k−1
+ 1 =

1

2
A + 1

Now A = A
2 + 1 and A = 2

NB

A much simpler but equally valid argument is that you expect ‘half’
a head in 1 toss, so you ought to get a ‘whole’ head in 2 tosses.

Theorem

The average number of trials needed to see an event with
probability p is 1

p .
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Exercise

9.4.12 A die is rolled until the first 4 appears. What is the
expected waiting time?

P(roll 4) = 1
6 hence E (no. of rolls until first 4) = 6
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Example

To find an object X in an unsorted list L of elements, one needs to
search linearly through L. Let the probability of X ∈ L be p, hence
there is 1− p likelihood of X being absent altogether. Find the
expected number of comparison operations.

If the element is in the list, then the number of comparisons
averages to 1

n (1 + . . .+ n); if absent we need n comparisons.
The first case has probability p, the second 1− p. Combining
these we find

En = p
1 + . . .+ n

n
+ (1−p)n = p

n + 1

2
+ (1−p)n = (1− p

2
)n +

p

2

As one would expect, increasing p leads to a lower En.
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One may expect that this would indicate a practical rule — that
high probability of success might lead to a high expected value.
Unfortunately this is not the case in a great many practical
situations.
Many lottery advertisements claim that buying more tickets leads
to better expected results — and indeed, obviously you will have
more potentially winning tickets. However, the expected value
decreases when the number of tickets is increased.

As an example, let us consider a punter placing bets on a roulette
(outcomes: 0, 1 . . . 36). Tired of losing, he decides to place $1 on
24 ‘ordinary’ numbers a1 < a2 < . . . < a24, selected from among 1
to 36.

His probability of winning is high indeed — 24
37 ≈ 65%; he scores

on any of his choices, and loses only on the remaining thirteen
numbers.
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But what about his performance?

If one of his numbers comes up, say ai , he wins $35 from the
bet on that number and loses $23 from the bets on the
remaining numbers, thus collecting $12.
This happens with probability p = 24

37 .

With probability q = 13
37 none of his numbers appears, leading

to loss of $24.

The expected result

p · $12− q · $24 = $12
24

37
− $24

13

37
= −$

24

37
≈ −65¢
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Many so-called ’winning systems’ that purport to offer a winning
strategy do something akin — they provide a scheme for frequent
relatively moderate wins, but at the cost of an occasional very big
loss.

It turns out (it is a formal theorem) that there can be no system
that converts an ‘unfair’ game into a ’fair’ one. In the language of
decision theory, ‘unfair’ denotes a game whose individual bets have
negative expectation.

It can be easily checked that any individual bets on roulette, on
lottery tickets or on just about any commercially offered game
have negative expected value.
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Standard Deviation and Variance

Definition

For random variable X with expected value (or: mean) µ = E (X ),
the standard deviation of X is

σ =
√

E ((X − µ)2)

and the variance of X is
σ2

Standard deviation and variance measure how spread out the
values of a random variable are. The smaller σ2 the more confident
we can be that X (ω) is close to E (X ), for a randomly selected ω.

NB

The variance can be calculated as E ((X − µ)2) = E (X 2)− µ2
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Example

Random variable Xd
def
= value of a rolled die

µ = E (Xd) = 3.5

E (X 2
d ) =

1

6
· 1 +

1

6
· 4 +

1

6
· 9 +

1

6
· 16 +

1

6
· 25 +

1

6
· 36 =

91

6

Hence, σ2 = E (X 2
d )− µ2 =

35

12
→ σ ≈ 1.71
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Exercise

9.5.10 (Supp) Two independent experiments are performed.
P(1st experiment succeeds) = 0.7
P(2nd experiment succeeds) = 0.2
Random variable X counts the number of successful experiments.

(a) Expected value of X ? E (X ) = 0.7 + 0.2 = 0.9

(b) Probability of exactly one success? 0.7 · 0.8 + 0.3 · 0.2 = 0.62

(c) Probability of at most one success? (b)+0.3 · 0.8 = 0.86

(e) Variance of X ? σ2 = (0.62 · 1 + 0.14 · 4)− 0.92 = 0.37
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Cumulative Distribution Functions
Definition

The cumulative distribution function cdfX : Z −→ R of an
integer random variable X is defined as

cdfX (y) 7→
∑

k≤y
P(X = k)

cdfX (y) collects the probabilities P(X ) for all values up to y

Example

Cumulative distribution function for sum of 2 dice

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1
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Example: Binomial Distributions

Definition

Binomial random variables count the number of ‘successes’ in n
independent experiments with probability p for each experiment.

P(X = k) =

(
n

k

)
pk(1− p)n−k

cdfB(y) 7→
∑

k≤y

(
n

k

)
pk(1− p)n−k

Theorem

If X is a binomially distributed random variable based on n and p,
then E (X ) = n · p with variance σ2 = n · p · (1− p)
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Example (binomial distribution)

No. of heads in 5 coin tosses

0 1 2 3 4 5 6
0

0.4

cdf for no. of heads in 5 coin tosses

0 1 2 3 4 5
0

0.5

1
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Exercise

9.4.10 An experiment is repeated 30,000 times with probability of
success 1

4 each time.

(a) Expected number of successes? E (X ) = 30, 000 · 1
4 = 7500

(b) Standard deviation? σ =
√

30, 000 · 1
4 · 3

4 = 75
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Normal Distribution

Fact

For large n, binomial distributions can be approximated by normal
distributions (a.k.a. Gaussian distributions) with mean µ = n · p
and variance σ2 = n · p · (1− p)

0 1 2 3 4 5 6
0

0.4
µ = 2.5

σ2 = 1.25

1√
2σ2π

· e−
(x−µ)2

2σ2
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Summary

counting

union rule, product rule, n!, Π(n, r),
(
n
r

)

events and their probability

counting, inclusion-exclusion, recursion for probabilities

conditional probability P(A|B), independence A⊥B

random variables X , expected value E (X ) (= mean µ)

cdf, standard deviation σ, variance σ2
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