
COMP4418: Knowledge Representation
and Reasoning
Prolog II

Maurice Pagnucco
School of Computer Science and Engineering

COMP4418, Week 3

1



Prolog

• Compound terms can contain other compound terms
• A compound term can contain the same kind of term, i.e., it can be recursive:
tree(tree(empty, jack, empty), fred, tree(empty, jill, empty))

• “empty” is an arbitrary symbol use to represent the empty tree
• A structure like this could be used to represent a binary tree that looks like:

2



Binary Trees

• A binary tree is either empty or it is a structure that contains data and left and
right subtrees which are also binary trees

• To test if some datum is in the tree:
in_tree(X, tree(_, X, _)).

in_tree(X, tree(Left, Y, _) :-

X \= Y,

in_tree(X, Left).

in_tree(X, tree(_, Y, Right) :-

X \= Y,

in_tree(X, Right).

3



The Size of a Tree

• tree_size(empty, 0).

tree_size(tree(Left, _, Right), N) :-

tree_size(Left, LeftSize),

tree_size(Right, RightSize),

N is LeftSize + RightSize + 1.

• The size of the empty tree is 0
• The size of a non-empty tree is the size of the left subtree plus the size of the

right subtree plus one for the current node

4



Lists

• A list may be nil or it may be a term that has a head and a tail. The tail is
another list.

• A list of numbers, [1, 2, 3] can be represented as:
list(1, list(2, list(3, nil)))

• Since lists are used so often, Prolog has a special notation:
[1, 2, 3] = list(1, list(2, list(3, nil)))

5



Examples of Lists

[X, Y, Z] = [1, 2, 3]? Unify the two terms on either side of the equals sign

X = 1
Y = 2 Variables match terms in corresponding positions
Z = 3

[X|Y] = [1, 2, 3]? The head and tail of a list are separated by
using ‘|’ to indicate that the term following

X = 1 the bar should unify with the tail of the list
Y = [2, 3]

[X|Y] = [1]? The empty list is written as ‘[]’

X = 1 The end of a list is usually []’
Y = []

6



More list examples

[X, Y|Z] = [fred, jim, jill, mary]? There must be at least two
elements in the list on the right

X = fred

Y = jim

Z = [jill, mary]

[X|Y] = [[a, f(e)], [n, b, [2]]]? The right hand list has two elements:

X = [a, f(e)] [a, f(e)] [n, b, [2]]

Y = [[n, b, [2]]] Y is the tail of the list,
[n, b, [2]] is just one element

7



List Membership

member(X, [X|_]).

member(X, [_|Y]) :-

member(X, Y).

• Rules about writing recursive programs:
◦ Only deal with one element at a time
◦ Believe that the recursive program you are writing has already been written and

works
◦ Write definitions, not programs

8



Appending Lists

• A commonly performed operation on lists is to append one list to the end of
another (or, concatenate two lists), e.g.,

append([1, 2, 3], [4, 5], [1, 2, 3, 4, 5]).

• Start planning by considering the simplest case:
append([], [1, 2, 3], [1, 2, 3]).

• Clause for this case:
append([], L, L).

9



Appending Lists

• Next case:
append([1], [2], [1, 2]).

• Since append([], [2], [2]):
append([H|T1], L, [H|T2]) :- append(T1, L, T2).

• Entire program is:
append([], L, L).

append([H|T1], L, [H|T2]) :-

append(T1, L, T2).

10



Reversing Lists

• rev([1, 2, 3], [3, 2, 1]).

• Start planning by considering the simplest case:
rev([], []).

• Note:
rev([2, 3], [3, 2]).

and
append([3, 2], [1], [3, 2, 1]).

11



Reversing Lists

• Entire program is:
rev([], []).

rev([A|B], C) :-

rev(B, D),

append(D, [A], C).

12



An Application of Lists

• Find the total cost of a list of items:
cost(flange, 3).

cost(nut, 1).

cost(widget, 2).

cost(splice, 2).

• We want to know the total cost of [flange, nut, widget, splice]

total_cost([], 0).

total_cost([A|B], C) :-

total_cost(B, B_cost),

cost(A, A_cost),

C is A_cost + B_cost.

13


