COMP4418: Knowledge Representation and Reasoning

Expressing Knowledge

Maurice Pagnucco
School of Computer Science and Engineering
COMP4418, Week 2

Knowledge engineering

KR is first and foremost about knowledge

- meaning and entailment
- find individuals and properties, then encode facts sufficient for entailments

Before implementing, need to understand clearly

- what is to be computed?
- why and where inference is necessary?

Example domain: university world

- people, lecturers, students, courses, graduations, awards, ...

Task: KB with appropriate entailments

- what vocabulary?
- what facts to represent?

Vocabulary

Domain-dependent predicates and functions

- main question: what are the individuals?
- here: people, academics, students, courses, ... named individuals
- alice, comp4418, facultyOfEngineering, foe, , ... basic types
- Person, Academic, Student, Course, ... attributes
- year1, year2, ..., core, elective, ... relationships
- Enrolledln, LecturerOf, ...
functions
- lecturerOf, licOf, bestFriendOf, ...

Basic facts

Usually atomic sentences and negations

- type facts

Student(alice),
Lecturer(barbara),
Course(comp4418)

- property facts

Difficult(comp4418),
\neg Studious(allan),
Studies(alice,comp4418)

- equality facts
barbara $=$ lecturerInCharge (comp1234),
krr = comp4418,
bestFriendOf(allan) = alice
Like a simple database
could store these facts in relational tables

Complex facts

Universal abbreviations
$\forall \mathrm{x}$. Lectures(lecturerInCharge(x), x$)$)
$\forall x, y, z$. (Lectures $(x, y) \wedge$ Studies $(z, y)) \rightarrow$ Teaches (x, z)
possible to express without quantifiers
Incomplete knowledge
Studies(alice, comp4418) \vee Studies(allan, comp4418)
which?
stronger
$\forall x$. Studies $(x$, comp9444) \vee Studies $(x$, comp9517)
$\exists x[$ Student $(x) \wedge$ Studies $(x$, comp4418)]
who?
cannot write down more complete version
Closure axioms

```
\(\forall x[\) Student \((x) \rightarrow x=\) alice \(\vee x=\) allan \(\vee x=\operatorname{brad} \ldots\) ]
\(\forall x \forall y[S\) tudies \((x, y) \rightarrow \ldots]\)
\(\forall x[x=\) comp4418 \(\vee x=\) alice \(\vee x=\) allan \(\vee x=\) barbara \(\ldots]\)
limits domain of discourse
also useful to have alice \(\neq\) allan ...
```


Terminological facts

General relationships among predicates. For example:

- disjoint
$\forall x[\operatorname{Mammal}(x) \rightarrow \neg \operatorname{Reptile}(x)]$
- subtype
$\forall x[\operatorname{Mammal}(x) \rightarrow \operatorname{Animal}(x)]$
- exhaustive
$\forall x[\operatorname{Day}(x) \rightarrow \operatorname{Monday}(x) \vee \ldots \vee \operatorname{Sunday}(x)]$
- symmetry
$\forall x \forall y[$ RelatedTo $(x, y) \rightarrow$ RelatedTo $(y, x)]$
- inverse
$\forall x \forall y[$ StudentOf $(x, y) \rightarrow \operatorname{LecturerOf}(y, x)]$
- type restriction
$\forall x \forall y[\operatorname{Studies}(x, y) \rightarrow \operatorname{Student}(x) \wedge \operatorname{Course}(y)]$
- full definition
$\forall x[\operatorname{comp} 4418 \operatorname{Student}(x) \equiv \operatorname{Student}(x) \wedge$ Studies $(x$, comp4418)]
$\forall x[\operatorname{aiMajor}(x) \equiv \operatorname{Student}(x) \wedge[($ Studies $(x$, comp4418) \wedge Studies $(x$, comp9444)) $\vee($ Studies $(x$, comp4418) \wedge Studies $(x$, comp9517) $) \vee($ Studies $(x$, comp9444) \wedge Studies $(x$, comp9517) $)]]$
- Usually universally quantified conditionals or biconditionals

Entailments: 1

Is there a course whose Lecturer-in-Charge teaches Alice?
$\exists x[$ Course $(x) \wedge$ Teaches (lic (x), alice) $]$??
Suppose $I=K B$.
Then $I \|$ Course(comp4418)
Also $I=\forall x$. Lectures(lecturerInCharge(x), x))
so $I=$ Lectures(lecturerlnCharge(comp4418), comp4418).
Finally $I=\forall x, y, z$. (Lectures $(x, y) \wedge$ Studies($\mathrm{z}, \mathrm{y})) \rightarrow$ Teaches (x, z)
and $I=$ Studies(alice, comp4418)
so $I=$ Teaches(lecturerInCharge(comp4418), alice).
Thus, $I \models$ Course(comp4418) \wedge Teaches(lecturerInCharge(comp4418), alice),
and so
$I \vDash \exists x[\operatorname{Course}(x) \wedge$ Teaches(lecturerInCharge $(x))$, alice)].
Can extract identity of Lecturer-in-Charge (since $I=$ barbara = lecturerInCharge(comp4418))

Entailments: 2

If nobody is studying comp9444, then is there a someone studying comp9517 who is an Al major? $\forall x[$ Student $(x) \rightarrow \neg$ Studies $(x$, comp9444)] $\rightarrow \exists y[$ Student $(y) \wedge$ Studies $(y$, comp9517)] ??
Note: $K B \models(\alpha \rightarrow \beta) \quad$ iff $\quad K B \cup\{\alpha\} \models \beta$ (Deduction Theorem)
Assume: $I \models K B \cup\{\forall x[\operatorname{Student}(x) \rightarrow \neg$ Studies $(x$, comp9444) $)\}$
Show: $I \vDash \exists y[$ Student $(y) \wedge$ Studies $(y$, comp9517) \wedge aiMajor $(y)]$

```
Have: Student(alice)
and }\quad\forallx[Student(x)->\neg\mathrm{ Studies( }x\mathrm{ , comp9444)]
so }\quad\neg\mathrm{ Studies(alice, comp9444)
Also: }\quad\forallx.Studies(x, comp9444) \vee Studies(x, comp9517
so Studies(alice, comp9517)
Also: Studies(alice, comp4418
Finally: }\quad\forallx[aiMajor (x)\equiv\operatorname{Student}(x)\wedge[(Studies(x,\mathrm{ comp4418) }\wedge\mathrm{ Studies( }x\mathrm{ , comp9444)) }
    (Studies( }x\mathrm{ , comp4418) ^ Studies( }x\mathrm{ , comp9517)) }
    (Studies(x, comp9444) ^ Studies(x, comp9517))]]
so aiMajor(alice)
Hence: }\quad\existsy[Student(y)^ Studies(y, comp9517) ^ aiMajor (y)
```

Proof as sequence of sentences

What individuals?

Sometimes useful to reduce n -ary predicates to 1 -place predicates and 1 -place functions

- involves reifying properties: new individuals
- typical of description logics / frame languages (later)

Flexibility in terms of arity:
Purchases(john,sears,bike) or
Purchases(john,sears,bike,feb14) or
Purchases(john,sears,bike,feb14,\$100)
Instead introduce purchase objects
$\operatorname{Purchase}(p) \wedge \operatorname{agent}(p)=$ john $\wedge \operatorname{obj}(p)=$ bike $\wedge \operatorname{source}(p)=$ sears $\wedge \operatorname{amount}(p)=\ldots \wedge \ldots$ allows purchase to be described at various levels of detail
Complex relationships:
MarriedTo(x, y) vs.
PreviouslyMarriedTo (x, y) vs.
ReMarriedTo(x, y)
Define marital status in terms of existence of marriages and divorces.
$\operatorname{Marriage}(m) \wedge \operatorname{partner} 1(m)=x \wedge \operatorname{partner2}(m)=y \wedge$ date $(m)=\ldots \wedge$ witness $(m)=\ldots \wedge \ldots$

Abstract individuals

Also need individuals for numbers, dates, times, addresses, etc.

- objects about which we ask wh-questions

Quantities as individuals

$$
\text { age(suzy) }=14
$$

age-in-years(suzy) $=14$
age-in-months(suzy) $=168$
perhaps better to have an object for the age of Suzy, whose value in years is 14
years(age(suzy)) = 14
months $(x)=12^{*}$ years (x)
centimeters $(x)=100^{*}$ meters (x)
Similarly with locations and times
instead of
time $(m)=$ "Jan 51992 4:47:03EST"
can use
time $(m)=t \wedge \operatorname{year}(t)=1992 \wedge \ldots$

Other sorts of facts

Statistical / probabilistic facts

- Half of the companies are located on the East Side
- Most of the employees are restless
- Almost none of the employees are completely trustworthy

Default / prototypical facts

- Company presidents typically have secretaries intercepting their phone calls
- Cars have four wheels

Intentional facts

- John believes that Henry is trying to blackmail him
- Jane does not want Jim to think that she loves John

Others ...

