
COMP4418, 2017 – Exercise

Weeks 6, 7, 8, 9

1 Answer Set Programming

1.1 Modelling

A set cover of a set S of sets s1, . . . , sn is a set of sets C ⊆ S such that
⋃

s∈S s =
⋃

s∈C s. A k-set cover
is a set cover of size k, that is, |C| = k.

For instance, for an input S = {{1, 2}, {2, 3}, {4, 5}, {1, 2, 3}}, there is a 2-set cover C = {{1, 2, 3}, {4, 5}}
since

⋃
s∈S s = {1, 2} ∪ {2, 3} ∪ {4, 5} ∪ {1, 2, 3} = {1, 2, 3} ∪ {4, 5} =

⋃
s∈C s.

Write an ASP program that decides the k-Set-Cover problem:

Input: a set of sets and a natural number k ≥ 0.

Problem: decide if there is a k-set cover.

Assume the input parameter S = {s1, . . . , sn} is encoded by a binary predicate s in the way that x ∈ si
iff s(i,x). The input parameter k is given as constant symbol k. Use a unary predicate c to represent
the output C in the way that si ∈ C iff c(i).

Solution

% Instance encoding of the above example:

% s(1, (1;2)). is a shorthand for s(1,1). s(1,2).

s(1, (1;2)).

s(2, (2;3)).

s(3, (4;5)).

s(4, (1;2;3)).

% Helper predicates.

universe(X) :- s(S,X).

covered(X) :- c(S), s(S,X).

% Generate candidate of cardinality k.

k { c(S) : s(S,X) } k.

% Test that the candidate covers the whole universe.

:- universe(X), not covered(X).

#show c/1.

1

1.2 Semantics

Consider the following program P .

a.

c :- not b,not d.

d :- a,not c.

Determine the stable models of S.

Solution

Candidate S Reduct PS Stable model?
{a, b, c, d} a. 7

{a, b, c} a. 7

{a, b, d} a. d :- a. 7

{a, c, d} a. 7

{b, c, d} a. 7

{a, b} a. d :- a. 7

{a, c} a. c. 3

{a, d} a. d :- a. 3

{b, c} a. 7

{b, d} a. d :- a. 7

{c, d} a. 7

{a} a. c. d :- a. 7

{b} a. d :- a. 7

{c} a. c. 7

{d} a. d :- a. 7

{} a. c. d :- a. 7

2 Reasoning about Knowledge

2.1 Cardinality of different sets related to OL

(This question is not relevant for the exam, but a good exercise to think a bit about the logic.)

Is the. . .

• set of formulas of OLPL

• set of worlds of OLPL

• set of epistemic states OLPL

• set of formulas of OL

• set of worlds of OL

• set of epistemic states OL

. . . finite, countably infinite, or uncountable?

2

Solution

Claim The set of formulas of OLPL is countably infinite.

Proof. Let F be the set of formulas of OLPL. Note that there are countably infinitely many propositions
{p, q, r, . . .} in OLPL. Hence F is clearly infinite, and it only remains to be shown that F is countable.

Let Fn be the formulas of length n. Every formula in Fn is a string over the alphabetA = {¬, (,),∨,K ,O, p, q, r, . . .}
and can hence be identified with an n-tuple from A× . . .×A︸ ︷︷ ︸

n-times

. Since the cartesian product of finitely many

countable sets is countable, Fn is countable. Since the set of formulas of OLPL is
⋃

n≥1 Fn and all Fn are
countable, the set of formulas is countable as well.

Claim The set of worlds of OLPL is uncountable.

Proof. Let s be a set of atomic propositions. We can identify every world w with a set s such that for
every atomic proposition p, w[p] = 1 iff p ∈ s. The set of worlds is hence bijective to the set of sets of
propositions. As the powerset of a countably infinite set is uncountable according to Cantor’s theorem,
and since the set of propositions is countably infinite, the set of sets of propositions is uncountable and
hence the set of worlds is uncountable as well.

Claim The set of epistemic states of OLPL is uncountable.

Proof. An epistemic state is a set of worlds. The set of epistemic states is hence the powerset of the set
of worlds, which is uncountable, so the set of epistemic states is uncountable as well.

Claim The set of formulas of OL is countably infinite.

Proof. There are countably infinitely many variables, standard names, function symbols, and predicate
symbols in OL. The proof then follows the same argument as for OLPL.

Claim The set of worlds of OL is uncountable.

Proof. The argument is analogous to OLPL.

Claim The set of epistemic states of OL is uncountable.

Proof. The argument is analogous to OLPL.

2.2 Introspection

Prove the following results from Slide 26:

• |= ∃xKα→ K∃xα.

• 6|= K∃xα→ ∃xKα.

Solution

Theorem |= ∃xKα→ K∃xα.

Proof. We need to show that for all e, e |= ∃xKα → K∃xα. Expanding the → and applying the rules
for ∨ and ¬ gives us that this is equivalent to showing that for all e, e 6|= ∃xKα or e |= K∃xα.

Suppose that e |= ∃xKα, for otherwise the claim holds immediately. Then by the rule for ∃, for some
standard name n, e |= Kαx

n. By the rule for K , for some standard name n, for all worlds w, if w ∈ e,
e, w |= αx

n. Then for all worlds w, if w ∈ e, for some standard name n, e, w |= αx
n. By the rule for ∃, for

all worlds w, if w ∈ e, e, w |= ∃xα. By the rule for K , e |= K∃xα.

Theorem 6|= K∃xα→ ∃xKα.

3

Proof. We need to show that for some e, e 6|= K∃xα → ∃xKα. This is equivalent to e |= ¬(K∃xα →
∃xKα), which is equivalent to showing e |= K∃xα ∧ ¬∃xKα, which further reduces to e |= K∃xα and
e 6|= ∃xKα.

Let α be P (x) and e = {w1, w2}, where w1[P (n)] 6= w2[P (n)] and w1[P (#1)] = 1 and w2[P (#2)] = 1.

By construction, there is a standard name n such that w1[P (n)] = 1, and there is another standard name
n such that w2[P (n)] = 1. Thus for every w ∈ e, there is a standard name n, such that w |= P (n). Thus
by the rule for ∃, for every world w, if w ∈ e, then w |= ∃P (x). Thus by the rule for K , e |= K∃P (x).

On the other hand, by construction, there is no standard name n such that w1[P (n)] = 1 and w2[P (n)] =
1. Thus there is no standard name n such that for every w ∈ e, w |= P (n). Thus by the rule for K , there is
no standard name n such that e |= KP (n). Thus by the rule for ∃, it is not the case that e |= ∃xKP (x),
that is, e 6|= ∃xKP (x).

2.3 Only-Knowing

Suppose all you know is

• the father of Sally is Frank or Fred, and

• Sally’s father is rich.

Formalise this statement in OL. Show that this statement does entail that Frank or Fred is known to be
rich, but it is not known who of them is rich.

Solution

Perhaps the most direct translation to OL is:

O
(
(fatherOf(Sally) = Frank ∨ fatherOf(Sally) = Fred) ∧
Rich(fatherOf(Sally))

where Sally, Frank, Fred shall denote standard names. Let KB denote that sentence within O.

We now need to prove the entailment

OKB |= K(Rich(Frank) ∨ Rich(Fred)) ∧ ¬KRich(Frank) ∧ ¬KRich(Fred)

Suppose e |= OKB. We need to show e |= K(Rich(Frank) ∨ Rich(Fred)) and e 6|= KRich(Frank) and
e 6|= KRich(Fred).

By the rule for O, we have w ∈ e iff w |= KB. That is, for all w, w ∈ e iff w |= fatherOf(Sally) = Frank∨
wfatherOf(Sally)=Fred and w |= Rich(fatherOf(Sally)). Thus for all w, w ∈ e iff (1) w[fatherOf(Sally)] =
Frank or w[fatherOf(Sally)] = Fred and (2) w[Rich(n)] = 1 where n = w[fatherOf(Sally)]. Thus for all
w, w ∈ e iff either w[fatherOf(Sally)] = Frank and w[Rich(Frank)] = 1 or w[fatherOf(Sally)] = Fred and
w[Rich(Fred)] = 1 (*).

We first show that e |= K(Rich(Frank) ∨ Rich(Fred)). This reduces to showing that for all w, if w ∈ e,
then w |= Rich(Frank) ∨ Rich(Fred). That is, for all w ∈ e, either w |= Rich(Frank) or w |= Rich(Fred),
which is true by (*).

Next we show that e 6|= KRich(Frank). This is equivalent to showing that for some w ∈ e, w 6|=
Rich(Frank). Let w be such that w[fatherOf(Sally)] = Fred and w[Rich(Fred)] = 1 and w[Rich(Frank)] =
0. Clearly, w satisfies the right-hand side of (*), so w ∈ e, and clearly w 6|= Rich(Frank).

Analogously to the case for Frank, we can show that e 6|= KRich(Fred).

4

2.4 Representation Theorem

Suppose you have a wedding database that tells you who is married to whom.1

Married(Mia,Frank) ∧
∃xMarried(x,Fred) ∧
Married(motherOf(Sally), fatherOf(Sally))

where Frank, Fred, Mia, Sally are standard names. Call this sentence KB.

(a) Who is not known to be married to Sally?

1. What is the set of tuples of standard names N such that n ∈ N iff OKB |= ¬KMarried(Sally, n)?

2. Determine RES[KB,Married(Sally, x)].

3. Determine whether OKB |= ∃x¬KMarried(Sally, x) using the representation theorem (Slide 31),
that is, by checking whether |= ‖∃x¬KMarried(Sally, x)‖KB.

(b) Who is known to be married?

1. What is the set of standard names N such that OKB |= K∃y (Married(n, y) ∨Married(y, n))?

2. Determine RES[KB,∃y (Married(x, y) ∨Married(y, x))]. (Note: there is one free variable, x.)

3. Determine whether OKB |= ∃xK∃y (Married(x, y) ∨Married(y, x)) using the representation theo-
rem, that is, by checking whether |= ‖∃xK∃y (Married(x, y) ∨Married(y, x))‖KB.

(c) Who is known to be married to an unknown person?

1. What is the set of tuples of standard names N such that (n1, n2) ∈ N iff OKB |= KMarried(n1, n2)?

2. What is the set of standard namesN such that n ∈ N iff OKB |= K∃x(Married(x, n)∧¬KMarried(x, n))?

3. Determine RES[KB,Married(x, y)]. (Note: there are two free variables, x and y.)

4. Determine RES[KB,∃x(Married(x, y) ∧ ¬(x= Mia ∧ y = Frank))]. (Note: there is one free variable, y.)

5. Determine whether OKB |= ∃yK∃x(Married(x, y) ∧ ¬KMarried(x, y)) using the representation
theorem, that is, by checking whether |= ‖∃yK∃x(Married(x, y) ∧ ¬KMarried(x, y))‖KB.

Solution

To save some space, we allow ourselves to simplify the end result of RES[KB, φ] sometimes. Any simplifi-
cation we use should preserve equivalence, that is, we can simplify α to β only when |= α↔ β. A typical
simplification is to reduce (α1 ∧ false)∨ (α2 ∧ true) to α2. I’ll write α

simpl
= β to indicate that α simplifies

to β, that is, that |= α↔ β.

1In a realistic scenario, we would add ∀x∀y (Married(x, y) ↔ Married(y, x)) to formalise that marriage is a symmetric
relation. For the sake of this example, we do not add this symmetry constraint to our knowledge.

5

(a) Who is not known to be married to Sally?

1. N contains all standard names.

2. The standard names that occur in the KB and the query are {Mia,Frank,Fred,Sally}.

RES[KB,Married(Sally, x)]

= (x= Mia ∧ RES[KB,Married(Sally,Mia)]) ∨
(x= Frank ∧ RES[KB,Married(Sally,Frank)]) ∨
(x= Fred ∧ RES[KB,Married(Sally,Fred)]) ∨
(x= Sally ∧ RES[KB,Married(Sally,Sally)]) ∨
(x 6= Mia ∧ x 6= Frank ∧ x 6= Fred ∧ x 6= Sally ∧ RES[KB,Married(Sally,#7)]

#7
x)

= (x= Mia ∧ false) ∨
(x= Frank ∧ false) ∨
(x= Fred ∧ false) ∨
(x= Sally ∧ false) ∨
(x 6= Mia ∧ x 6= Frank ∧ x 6= Fred ∧ x 6= Sally ∧ false

#7
x)

(because KB 6|= Married(Sally,Mia), KB 6|= Married(Sally,Frank), . . . , KB 6|= Married(Sally,#7))
simpl
= false

3. |= ‖∃x¬KMarried(Sally, x)‖KB because:

‖∃x¬KMarried(Sally, x)‖KB

= ∃x¬‖KMarried(Sally, x)‖KB

= ∃x¬RES[KB, ‖Married(Sally, x)‖KB]

= ∃x¬RES[KB,Married(Sally, x)]

= ∃x¬false

(b) Who is known to be married?

1. N = {Mia,Frank,Fred}

2. The standard names that occur in the KB and the query are {Mia,Frank,Fred,Sally}.

RES[KB,∃y (Married(x, y) ∨Married(y, x))]

= (x= Mia ∧ RES[KB,∃y (Married(Mia, y) ∨Married(y,Mia))]) ∨
(x= Frank ∧ RES[KB,∃y (Married(Frank, y) ∨Married(y,Frank))]) ∨
(x= Fred ∧ RES[KB,∃y (Married(Fred, y) ∨Married(y,Fred))]) ∨
(x= Sally ∧ RES[KB,∃y (Married(Sally, y) ∨Married(y,Sally))]) ∨
(x 6= Mia∧x 6= Frank∧x 6= Fred∧x 6= Sally∧RES[KB,∃y (Married(#7, y)∨Married(y,#7))]

#7
x)

= (x= Mia ∧ true) ∨
(x= Frank ∧ true) ∨
(x= Fred ∧ true) ∨
(x= Sally ∧ false) ∨
(x 6= Mia ∧ x 6= Frank ∧ x 6= Fred ∧ x 6= Sally ∧ false

#7
x)

(because KB |= ∃y (Married(Mia, y) ∨Married(y,Mia)), etc.)
simpl
= (x= Mia ∨ x= Frank ∨ x= Fred)

3. |= ‖∃xK∃y (Married(x, y) ∨Married(y, x))‖KB because:

6

‖∃xK∃y (Married(x, y) ∨Married(y, x))‖KB

= ∃x‖K∃y (Married(x, y) ∨Married(y, x))‖KB

= ∃xRES[KB, ‖∃y (Married(x, y) ∨Married(y, x))‖KB]

= ∃xRES[KB,∃y (Married(x, y) ∨Married(y, x))]

= ∃x(x= Mia ∨ x= Frank ∨ x= Fred)

(c) Who is known to be married to an unknown person?

1. N = {(Mia,Frank)}

2. N = {Fred}

3. The standard names that occur in the KB and the query are {Mia,Frank,Fred,Sally}.

RES[KB,Married(x, y)]

= (x= Mia ∧ RES[KB,Married(Mia, y)]) ∨
(x= Frank ∧ RES[KB,Married(Frank, y)]) ∨
(x= Fred ∧ RES[KB,Married(Fred, y)]) ∨
(x= Sally ∧ RES[KB,Married(Sally, y)]) ∨
(x 6= Mia ∧ x 6= Frank ∧ x 6= Fred ∧ x 6= Sally ∧ RES[KB,Married(#7, y)]

#7
x)

= (x= Mia ∧ y = Frank) ∨
(x= Frank ∧ false) ∨
(x= Fred ∧ false) ∨
(x= Sally ∧ false) ∨
(x 6= Mia ∧ x 6= Frank ∧ x 6= Fred ∧ x 6= Sally ∧ false

#7
x)

because the recursive calls to RES[KB,Married(n, y)] yield the following:

RES[KB,Married(Mia, y)]

= (y = Mia ∧ RES[KB,Married(Mia,Mia)]) ∨
(y = Frank ∧ RES[KB,Married(Mia,Frank)]) ∨
(y = Fred ∧ RES[KB,Married(Mia,Fred)]) ∨
(y = Sally ∧ RES[KB,Married(Mia,Sally)]) ∨
(y 6= Mia ∧ y 6= Frank ∧ y 6= Fred ∧ y 6= Sally ∧ RES[KB,Married(Mia,#8)]

#8
y)

simpl
= (y = Frank)

for n ∈ {Frank,Fred,Sally}:
RES[KB,Married(n, y)]

= (y = Mia ∧ RES[KB,Married(n,Mia)]) ∨
(y = Frank ∧ RES[KB,Married(n,Frank)]) ∨
(y = Fred ∧ RES[KB,Married(n,Fred)]) ∨
(y = Sally ∧ RES[KB,Married(n, Sally)]) ∨
(y 6= Mia ∧ y 6= Frank ∧ y 6= Fred ∧ y 6= Sally ∧ RES[KB,Married(n,#8)]

#8
y)

simpl
= false

RES[KB,Married(#7, y)]

= (y = Mia ∧ RES[KB,Married(#7,Mia)]) ∨
(y = Frank ∧ RES[KB,Married(#7,Frank)]) ∨
(y = Fred ∧ RES[KB,Married(#7,Fred)]) ∨
(y = Sally ∧ RES[KB,Married(#7,Sally)]) ∨
(y = #7 ∧ RES[KB,Married(#7,#7)]) ∨
(y 6= Mia ∧ y 6= Frank ∧ y 6= Fred ∧ y 6= Sally ∧ y 6= #7 ∧ RES[KB,Married(#7,#8)]

#8
y)

7

simpl
= false2

simpl
= (x= Mia ∧ y = Frank)

4. The standard names that occur in the KB and the query are {Mia,Frank,Fred,Sally}.

RES[KB,∃x(Married(x, y) ∧ ¬(x= Mia ∧ y = Frank))]

= (y = Mia ∧ RES[KB,∃x(Married(x,Mia) ∧ ¬(x= Mia ∧Mia = Frank))]) ∨
(y = Frank ∧ RES[KB,∃x(Married(x,Frank) ∧ ¬(x= Mia ∧ Frank = Frank))]) ∨
(y = Fred ∧ RES[KB,∃x(Married(x,Fred) ∧ ¬(x= Mia ∧ Fred = Frank))]) ∨
(y = Sally ∧ RES[KB,∃x(Married(x, Sally) ∧ ¬(x= Mia ∧ Sally = Frank))]) ∨
(y 6= Mia ∧ y 6= Frank ∧ y 6= Fred ∧ y 6= Sally ∧

RES[KB,∃x(Married(x,#8) ∧ ¬(x= Mia ∧ #8 = Frank))]
#8
y)

= (y = Mia ∧ false) ∨
(y = Frank ∧ false) ∨
(y = Fred ∧ true) ∨
(y = Sally ∧ false) ∨
(y 6= Mia ∧ y 6= Frank ∧ y 6= Fred ∧ y 6= Sally ∧ false

#8
y)

because the recursive calls to RES[KB,∃x(Married(x, n) ∧ ¬(x= Mia ∧ n= Frank))] yield the
following:

RES[KB,∃x(Married(x,Mia) ∧ ¬(x= Mia ∧Mia = Frank))]

= false (because KB 6|= ∃xMarried(x,Mia))

RES[KB,∃x(Married(x,Frank) ∧ ¬(x= Mia ∧ Frank = Frank))]

= false (because KB 6|= ∃x(Married(x,Frank) ∧ x 6= Mia))

RES[KB,∃x(Married(x,Fred) ∧ ¬(x= Mia ∧ Fred = Frank))]

= true (because KB |= ∃x(Married(x,Mia))

RES[KB,∃x(Married(x,Sally) ∧ ¬(x= Mia ∧ Sally = Frank))]

= false (because KB 6|= ∃xMarried(x,Sally))

RES[KB,∃x(Married(x,#8) ∧ ¬(x= Mia ∧ #8 = Frank))]

= false (because KB 6|= ∃xMarried(x,#8))
simpl
= y = Fred

5. |= ‖∃yK∃x(Married(x, y) ∧ ¬KMarried(x, y))‖KB because:

‖∃yK∃x(Married(x, y) ∧ ¬KMarried(x, y))‖KB

= ∃y‖K∃x(Married(x, y) ∧ ¬KMarried(x, y))‖KB

= ∃yRES[KB, ‖∃x(Married(x, y) ∧ ¬KMarried(x, y))‖KB]

= ∃yRES[KB,∃x(Married(x, y) ∧ ¬‖KMarried(x, y)‖KB)]

= ∃yRES[KB,∃x(Married(x, y) ∧ ¬RES[KB, ‖Married(x, y)‖KB])]

= ∃yRES[KB,∃x(Married(x, y) ∧ ¬RES[KB,Married(x, y)])]

= ∃yRES[KB,∃x(Married(x, y) ∧ ¬(x= Mia ∧ y = Frank))]

= ∃yy = Fred

2Note that when determining RES[KB,Married(#7, y)], the standard names occuring in the KB and in the query are
{Mia,Frank,Fred,Sally,#7}. Hence RES[KB,Married(#7, y)] does mention #7 as well – it is only our simplification to false
that made #7 disappear. In any case, #7 does not appear in RES[KB,Married(x, y)], because it substitutes x back for #7

after the recursive call to RES[KB,Married(#7, y)] by writing RES[KB,Married(#7, y)]
#7
x .

8

3 Limited Reasoning

3.1 Unit Propagation and Subsumption

Determine UP(s), UP+(s), UP−(s), whether s is obviously inconsistent, and whether s is obviously
consistent, for. . .

1. s = {}

2. s = {p,¬p}

3. s = {(p ∨ q), (¬q ∨ ¬r), r}

4. s = {(p ∨ q), (p ∨ ¬q), (¬p ∨ q), (¬p ∨ ¬q)}

Solution

1. s = {}

• UP(s) = {}
• UP+(s) = {}
• UP−(s) = {}
• s is not obviously inconsistent because � /∈ UP(s)

• s is obviously consistent because UP−(s) doesn’t contain � nor it mentions any P and ¬P

2. s = {p,¬p}

• UP(s) = {�, p,¬p}
• UP+(s) = {c | c is a clause} because � ∈ UP(s) subsumes every clause (recall that we identify

a clause (`1 ∨ . . .∨ `k) with the set {`1, . . . , `k}, so the empty clause corresponds to the empty
set, and a clause c1 subsumes a clause c2 iff c1 ⊆ c2, e.g., (p ∨ q) subsumes (p ∨ q ∨ r), but
(p ∨ q) does not subsume (¬p ∨ ¬q)).

• UP−(s) = {�} (because we remove all the clauses from UP(s) that are subsumed by another
clause, and here p and ¬p both are subsumed by �)

• s is obviously inconsistent because � ∈ UP(s)

• s is not obviously consistent because � ∈ UP−(s)3

3. s = {(p ∨ q), (¬q ∨ ¬r), r}

• UP(s) = {r,¬q, p, (p ∨ q), (¬q ∨ ¬r)}
• UP+(s) = {r,¬q, p} ∪ {c | c contains r, ¬q, or p}
• UP−(s) = {r,¬q, p}
• s is not obviously inconsistent because � /∈ UP(s)

• s is obviously consistent because UP−(s) doesn’t contain � nor it mentions any P and ¬P

4. s = {(p ∨ q), (p ∨ ¬q), (¬p ∨ q), (¬p ∨ ¬q)}

• UP(s) = {(p ∨ q), (p ∨ ¬q), (¬p ∨ q), (¬p ∨ ¬q)}
3The definition of obviously consistent on Slide 25 was missing a case for the empty clause: when the emptpy clause is

in UP−(s), then s is not obviously consistent (and in fact s is obviously inconsistent). The slide has been updated.

9

• UP+(s) = {(p∨q), (p∨¬q), (¬p∨q), (¬p∨¬q), (p∨q∨r), (p∨¬q∨r), (¬p∨q∨r), (¬p∨¬q∨r), . . .} =
{c | p, q ∈ c or p,¬q ∈ c or ¬p, q ∈ c or ¬p,¬q ∈ c}

• UP−(s) = {(p ∨ q), (p ∨ ¬q), (¬p ∨ q), (¬p ∨ ¬q)}
• s is not obviously inconsistent because � /∈ UP(s)

• s is not obviously consistent because UP−(s) mentions p and ¬p (as well as q and ¬q)

3.2 Minimal Belief Level

1. Let s = {}. Find the minimal k such that s |≈ Kk (p ∨ ¬p).

2. Let s = {p,¬p}. Find the minimal k such that s |≈ Kkq.

3. Let s = {(p ∨ q), (¬p ∨ r)}. Find the minimal k such that s |≈ Kk (q ∨ r).

4. Let s = {(o ∨ p ∨ r), (o ∨ ¬p ∨ r), (¬o ∨ q), (¬o ∨ ¬q)}. Find the minimal k such that s |≈ Kkr.

Solution

1. Let s = {}.

• k = 0:

s |≈ K0(p ∨ ¬p)
iff s is obv. inconsistent or s |≈ (p ∨ ¬p)
iff s is obv. inconsistent or (p ∨ ¬p) ∈ UP+(s)

7

• k = 1:

s |≈ K1(p ∨ ¬p)
iff for some proposition P ,

s ∪ {P} |≈ K0(p ∨ ¬p) and s ∪ {¬P} |≈ K0(p ∨ ¬p)
if (split on p)
s ∪ {p} |≈ K0(p ∨ ¬p) and s ∪ {¬p} |≈ K0(p ∨ ¬p)

iff s ∪ {p} is obv. incons. or s ∪ {p} |≈ (p ∨ ¬p), and
s ∪ {¬p} is obv. incons. or s ∪ {¬p} |≈ (p ∨ ¬p)

iff s ∪ {p} is obv. incons. or (p ∨ ¬p) ∈ UP+(s ∪ {p}), and
s ∪ {¬p} is obv. incons. or (p ∨ ¬p) ∈ UP+(s ∪ {¬p})
3 (because p and ¬p both subsume (p ∨ ¬q))

2. Let s = {p,¬p}.

• k = 0:

s |≈ K0q

iff s is obv. inconsistent or s |≈ q
3 (because UP+(s) contains the empty clause)

3. Let s = {(p ∨ q), (¬p ∨ r)}.

• k = 0:

s |≈ K0(q ∨ r)

10

iff s is obv. inconsistent or s |≈ (q ∨ r)
7

• k = 1:

s |≈ K1(q ∨ r)
iff for some proposition P ,

s ∪ {P} |≈ K0(q ∨ r) and s ∪ {¬P} |≈ K0(q ∨ r)
iff for some proposition P ,

s ∪ {P} is obv. inconsistent or (p ∨ q) ∈ UP+(s ∪ {P}), and
s ∪ {¬P} is obv. inconsistent or (p ∨ q) ∈ UP+(s ∪ {¬P})

if (split on p)
s ∪ {p} is obv. inconsistent or (p ∨ q) ∈ UP+(s ∪ {p}), and
s ∪ {¬p} is obv. inconsistent or (p ∨ q) ∈ UP+(s ∪ {¬p})
3 (because r ∈ UP+(s∪{p}) subsumes (q∨ r), and q ∈ UP+(s∪{¬p}) subsumes (q∨ r))

4. Let s = {(o ∨ p ∨ r), (o ∨ ¬p ∨ r), (¬o ∨ q), (¬o ∨ ¬q)}.

• k = 0:

s |≈ K0r

iff s is obv. inconsistent or s |≈ r
7

• k = 1:

s |≈ K1r

iff for some proposition P ,
s ∪ {P} |≈ K0r and
s ∪ {¬P} |≈ K0r

iff for some proposition P ,
s ∪ {P} is obv. incons. or s ∪ {P} |≈ r and
s ∪ {¬P} is obv. incons. or s ∪ {¬P} |≈ r
7 (splitting on o gives us the empty clause in the o-branch, but in the ¬o-branch unit
propagation stops after producing (p ∨ r), (¬p ∨ r); splitting on p only gives us (o ∨ r) in
either branch but nothing further; splitting on q produces ¬o and (p∨r), (¬p∨r) in either
branch but nothing more)

• k = 2:

s |≈ K2r

iff for some proposition P1,
s ∪ {P1} |≈ K1r and
s ∪ {¬P1} |≈ K1r

iff for some proposition P1,

for some proposition P2,
s ∪ {P1, P2} |≈ K0r and
s ∪ {P1,¬P2} |≈ K0r

and

for some proposition P2,
s ∪ {¬P1, P2} |≈ K0r and
s ∪ {¬P1,¬P2} |≈ K0r

iff for some proposition P1,

11

for some proposition P2,
s ∪ {P1, P2} is obv. incons. or s ∪ {P1, P2} |≈ r and
s ∪ {P1,¬P2} is obv. incons. or s ∪ {P1,¬P2} |≈ r
and

for some proposition P2,
s ∪ {¬P1, P2} is obv. incons. or s ∪ {¬P1, P2} |≈ r and
s ∪ {¬P1,¬P2} is obv. incons. or s ∪ {¬P1,¬P2} |≈ r

if (split on o first; in the positive case, we’re done; in the negative case, split on p next)

for arbitrary P2,
s ∪ {o, P2} is obv. incons. or r ∈ UP+(s ∪ {o, P2}) and
s ∪ {o,¬P2} is obv. incons. or r ∈ UP+(s ∪ {o, P2})
and

r ∈ UP+(s ∪ {¬o, p}) or r ∈ UP+(s ∪ {¬o, p}) and
r ∈ UP+(s ∪ {¬o,¬p}) or r ∈ UP+(s ∪ {¬o,¬p})

3 (because s∪{o} is obviously inconsistent, and UP+(s∪{¬o, p}) and UP+(s∪{¬o,¬p})
both include r)

4 Reasoning about Actions

4.1 Basic Action Theories

• Consider a light switch. Model that the fluent LightOn is toggled by an action switch.

• Consider some object that may contain other objects. Setting the containing object alight also sets
alight the objects in the box. Model a Burning(x) fluent using an action setAlight(x) and another
predicate In(x, y) that indicates that x is in y.

• You’re participating in a drug trial: you’re sick; you take a some medication, which may be placebo
or not; and you see whether or not you feel better afterwards. Model the Sick fluent, which is
“disabled” when you take medication x, represented by action take(x), provided that x is not
placebo, that is, ¬Placebo(x). Also model the sensing axiom for the feel action, which shall tell you
whether you’re still sick or not.

Solution

• �[a]LightOn↔ (a= switch ∧ ¬LightOn) ∨ (LightOn ∧ a 6= switch)

– Positive effect axiom: a= switch ∧ ¬LightOn→ [a]LightOn

– Negative effect axiom: a= switch ∧ LightOn→ [a]¬LightOn

– Succ.-state axiom: �[a]LightOn↔ (a=switch∧¬LightOn)∨(LightOn∧¬(a=switch∧LightOn))
simplies to: �[a]LightOn↔ (a= switch ∧ ¬LightOn) ∨ (LightOn ∧ (a 6= switch ∨ ¬LightOn))
simplies to: �[a]LightOn↔ (a= switch ∧ ¬LightOn) ∨ (LightOn ∧ a 6= switch)

• �[a]Burning(x)↔ a= setAlight(x) ∨ ∃y (a= setAlight(y) ∧ In(x, y)) ∨ Burning(x)

– Positive effect axiom: a= setAlight(x) ∨ ∃y (a= setAlight(y) ∧ In(x, y))→ Burning(x)

– Negative effect axiom: false→ [a]¬Burning(x) (the question doesn’t say anything about ways
to put out a fire)

12

– Succ.-state axiom: �[a]Burning(x) ↔ (a = setAlight(x) ∨ ∃y (a = setAlight(y) ∧ In(x, y))) ∨
(Burning(x) ∧ ¬false)
simplies to: �[a]Burning(x)↔ a= setAlight(x)∨ ∃y (a= setAlight(y)∧ In(x, y))∨Burning(x)

• �[a]Sick↔ Sick ∧ ∀x(a 6= take(x) ∨ Placebo(x))

– Positive effect axiom: false→ [a]¬Sick

– Negative effect axiom: ∃x(a= take(x) ∧ ¬Placebo(x))→ [a]¬Sick

– Succ.-state axiom: �[a]Sick↔ false ∨ (Sick ∧ ¬(∃x(a= take(x) ∧ ¬Placebo(x))))
simplifies: �[a]Sick↔ false ∨ (Sick ∧ (∀x(a 6= take(x) ∨ Placebo(x))))
simplifies: �[a]Sick↔ Sick ∧ (∀x(a 6= take(x) ∨ Placebo(x)))

�SF(a)↔ (a= feel→ Sick)

4.2 Regression

Consider the following basic action theory, where γ and ϕ are the right-hand sides of the successor-state
axiom of Sick and the axiom for SF from the previous task.

Σ0 = {Sick ∧ ¬Placebo(#1) ∧ Placebo(#2)}
Σ1 = {true}

Σdyn = {�[a]Sick↔ γ,

�[a]Placebo(x)↔ Placebo(x),

�Poss(a)↔ true,

�SF(a)↔ ϕ}

(a) Prove that Σ0 ∧ Σdyn |= [take(#1)]¬Sick using regression.4

(b) Prove that Σ0 ∧ Σdyn ∧O(Σ1 ∧ Σdyn) |= [take(#1)]¬K¬Sick.

(c) Prove that Σ0 ∧ Σdyn ∧O(Σ1 ∧ Σdyn) |= [take(#1)][feel]K¬Sick.

Solution

(a) By the Theorem from Slide 25, we have

Σ0 ∧ Σdyn |= [take(#1)]¬Sick iff Σ0 |= R[〈〉, [take(#1)]¬Sick]

Let’s determine the regression first:

R[〈〉, [take(#1)]¬Sick]

= R[take(#1),¬Sick]

= ¬R[take(#1),Sick]

= ¬R[〈〉, γa
take(#1)

]

= ¬R[〈〉, (Sick ∧ ∀x(a 6= take(x) ∨ Placebo(x)))a
take(#1)

]

4We defined Σ0 and Σdyn as sets of sentences. We identify such a set of sentences with the conjunction of its elements.
That is, writing Σ0 ∧ Σdyn |= α stands for

∧
φ∈Σ0

φ ∧
∧
ψ∈Σdyn

ψ |= α.

13

= ¬R[〈〉, (Sick ∧ ∀x(take(#1) 6= take(x) ∨ Placebo(x)))]

= ¬(R[〈〉,Sick] ∧ ∀x(R[〈〉, take(#1) 6= take(x)] ∨R[〈〉,Placebo(x)]))

= ¬(Sick ∧ ∀x(take(#1) 6= take(x) ∨ Placebo(x)))

simpl
= (¬Sick ∨ ¬∀x(take(#1) 6= take(x) ∨ Placebo(x)))

simpl
= (¬Sick ∨ ∃x(take(#1) = take(x) ∧ ¬Placebo(x)))

simpl
= (¬Sick ∨ ∃x(#1 = x ∧ ¬Placebo(x)))

simpl
= (¬Sick ∨ ¬Placebo(#1))

So we only need to prove that Σ0 |= (¬Sick ∨ ¬Placebo(#1)), that is, for all w, if w |= Σ0, then w |=
(¬Sick ∨ ¬Placebo(#1)), which holds since for every w such that w |= Σ0, we have w |= ¬Placebo(#1),
and hence w |= (¬Sick ∨ ¬Placebo(#1)).

(b) By the Theorem from Slide 35, we have

Σ0 ∧ Σdyn ∧O(Σ1 ∧ Σdyn) |= [take(#1)]¬K¬Sick iff Σ0 ∧OΣ1 |= R[〈〉, [take(#1)]¬K¬Sick]

Let’s determine the regression first:

R[〈〉, [take(#1)]¬K¬Sick]

= ¬R[take(#1),K¬Sick]

= ¬(R[〈〉,SF(take(#1))→ K(SF(take(#1))→ [take(#1)]¬Sick)] ∧
R[〈〉,¬SF(take(#1))→ K(¬SF(take(#1))→ [take(#1)]¬Sick)])

= ¬(R[〈〉,SF(take(#1))]→ R[〈〉,K(SF(take(#1))→ [take(#1)]¬Sick)] ∧
¬R[〈〉,SF(take(#1))]→ R[〈〉,K(¬SF(take(#1))→ [take(#1)]¬Sick)])

= ¬(R[〈〉,SF(take(#1))]→ K(R[〈〉,SF(take(#1))]→ R[〈〉, [take(#1)]¬Sick]) ∧
¬R[〈〉,SF(take(#1))]→ K(¬R[〈〉,SF(take(#1))]→ R[〈〉, [take(#1)]¬Sick]))

= ¬(R[〈〉,SF(take(#1))]→ K(R[〈〉,SF(take(#1))]→ ¬R[take(#1),Sick]) ∧
¬R[〈〉,SF(take(#1))]→ K(¬R[〈〉,SF(take(#1))]→ ¬R[take(#1),Sick]))

= ¬(R[〈〉, ϕa
take(#1)

]→ K(R[〈〉, ϕa
take(#1)

]→ ¬R[take(#1),Sick]) ∧
¬R[〈〉, ϕa

take(#1)
]→ K(¬R[〈〉, ϕa

take(#1)
]→ ¬R[take(#1),Sick]))

= ¬((take(#1) = feel→ Sick)→ K((take(#1) = feel→ Sick)→ ¬(¬Sick ∨ ¬Placebo(#1))) ∧
¬(take(#1) = feel→ Sick)→ K(¬(take(#1) = feel→ Sick)→ ¬(¬Sick ∨ ¬Placebo(#1))))

(by reusing the the result from (a))

simpl
= ¬K¬(¬Sick ∨ ¬Placebo(#1))

(because take(#1)=feel is unsatisfiable, so (take(#1)=feel→ Sick) is valid, and hence ¬(take(#1)=
feel→ Sick)→ K . . . is valid)

simpl
= ¬K(Sick ∧ Placebo(#1))

So we only need to show that Σ0∧OΣ1 |= ¬K(Sick∧Placebo(#1)). Suppose e, w |= Σ0∧OΣ1. Then e is the
set of all worlds, since Σ1 is just true. Clearly there is a world w ∈ e such that w 6|= (Sick∧¬Placebo(#1)).
Hence e 6|= K(Sick ∧ Placebo(#1)). So e |= ¬K(Sick ∧ Placebo(#1)).

14

(c) By the Theorem from Slide 35, we have

Σ0 ∧ Σdyn ∧O(Σ1 ∧ Σdyn) |= [take(#1)][feel]K¬Sick iff Σ0 ∧OΣ1 |= R[〈〉, [take(#1)][feel]K¬Sick]

Let’s determine the regression first (to keep the presentation shorter, I’ll simplify a bit more aggressively):

R[〈〉, [take(#1)][feel]K¬Sick]

= R[take(#1) · feel,K¬Sick]

= R[take(#1),SF(feel)→ K(SF(feel)→ ¬[feel]Sick)] ∧
R[take(#1),¬SF(feel)→ K(¬SF(feel)→ ¬[feel]Sick)]

= (R[take(#1),SF(feel)]→ R[take(#1),K(SF(feel)→ ¬[feel]Sick)]) ∧
(¬R[take(#1),SF(feel)]→ R[take(#1),K(¬SF(feel)→ ¬[feel]Sick)])

= (Sick ∧ Placebo(#1)→ K(¬Sick ∨ ¬Placebo(#1))) ∧ (¬(Sick ∧ Placebo(#1))→ true)
because

R[take(#1),Sick]

= R[〈〉,Sick ∧ ∀x(take(#1) 6= take(x) ∨ Placebo(x))]

= R[〈〉,Sick] ∧ ∀x(take(#1) 6= take(x) ∨R[〈〉,Placebo(x)])

= Sick ∧ ∀x(take(#1) 6= take(x) ∨ Placebo(x))
simpl
= Sick ∧ Placebo(#1)

R[take(#1),SF(feel)]

= R[take(#1), feel = feel→ Sick]

= feel = feel→ R[take(#1),Sick]
simpl
= R[take(#1),Sick]

= Sick ∧ Placebo(#1)

R[take(#1),K(SF(feel)→ ¬[feel]Sick)]

= R[〈〉,SF(take(#1))→ K(SF(take(#1))→ [take(#1)](SF(feel)→ ¬[feel]Sick))] ∧
R[〈〉,¬SF(take(#1))→ K(¬SF(take(#1))→ [take(#1)](SF(feel)→ ¬[feel]Sick))]

= (R[〈〉,SF(take(#1))]→ K(R[〈〉,SF(take(#1))]→ (R[take(#1),SF(feel)]→ ¬R[take(#1) · feel,Sick])))∧
(¬R[〈〉,SF(take(#1))]→ K(¬R[〈〉,SF(take(#1))]→ (R[take(#1),SF(feel)]→ ¬R[take(#1) · feel,Sick])))

= (true→ K(true→ (R[take(#1),SF(feel)]→ ¬R[take(#1) · feel,Sick]))) ∧
(¬true→ K(¬true→ (R[take(#1),SF(feel)]→ ¬R[take(#1) · feel,Sick])))
because R[〈〉,SF(take(#1)] = (take(#1) = feel→ Sick)

simpl
= true

simpl
= K(R[take(#1),SF(feel)]→ ¬R[take(#1) · feel,Sick])

= K(R[take(#1),SF(feel)]→ ¬R[take(#1),Sick ∧ ∀x(feel 6= take(x) ∨ Placebo(x))])

= K(R[take(#1),SF(feel)]→ ¬(R[take(#1),Sick]∧∀x(feel 6=take(x)∨R[take(#1),Placebo(x)])))
simpl
= K(R[take(#1),SF(feel)]→ ¬R[take(#1),Sick])

= K(Sick ∧ Placebo(#1)→ ¬(Sick ∧ Placebo(#1)))
simpl
= K¬(Sick ∧ Placebo(#1))
simpl
= K(¬Sick ∨ ¬Placebo(#1))

R[take(#1),K(¬SF(feel)→ ¬[feel]Sick)]

15

= (analogous to the above)

= K(¬(Sick ∧ Placebo(#1))→ ¬(Sick ∧ Placebo(#1)))
simpl
= Ktrue
simpl
= true

simpl
= Sick ∧ Placebo(#1)→ K(¬Sick ∨ ¬Placebo(#1))

It remains to be shown that Σ0 ∧ OΣ1 |= Sick ∧ Placebo(#1) → K(¬Sick ∨ ¬Placebo(#1)). Suppose
e, w |= Σ0 ∧ OΣ1. Then w |= Sick ∧ ¬Placebo(#1). Thus w 6|= Sick ∧ Placebo(#1), and hence e, w |=
Sick ∧ Placebo(#1)→ K(¬Sick ∨ ¬Placebo(#1)).

4.3 Knowledge after Actions

Prove the theorem from Slide 34, which is crucial for the regression of knowledge:

|= �[a]Kα↔ (SF(a)→ K(SF(a)→ [a]α)) ∧
(¬SF(a)→ K(¬SF(a)→ [a]α))

Solution

Theorem

|= �[a]Kα↔ (SF(a)→ K(SF(a)→ [a]α)) ∧
(¬SF(a)→ K(¬SF(a)→ [a]α))

Proof. We need to show that e, w, z |= [n]Kα↔ (SF(n)→ K(SF(n)→ [n]α))∧(¬SF(n)→ K(¬SF(n)→
[n]α)) for all e, w, z.

For the only-if direction suppose e, w, z |= [n]Kα. Then by the rules for [n] and K , for all w′ ∈ e with
w 'z·n w

′, e, w′, z · n |= α. Suppose w[SF(n)] = 1 (the case for w[SF(n)] = 0 is analogous). By definition
of 'z·n and by the rule for [n], for all w′ ∈ e with w 'z w

′ and w′[SF(n)] = 1, e, w′, z |= [n]α. Then for
all w′ ∈ e with w 'z w

′, e, w′, z |= SF(n) → [n]α. By the rule for K , e, w, z |= K(SF(n) → [n]α). Thus
and since w[SF(n)] = 1, the right-hand side holds.

Conversely, suppose e, w, z |= (SF(n) → K(SF(n) → [n]α)) ∧ (¬SF(n) → K(¬SF(n) → [n]α)). Suppose
w |= SF(n) (the case for w |= ¬SF(n) is analogous). Then e, w, z |= K(SF(n)→ [n]α). By the rule for K ,
for all w′ ∈ e with w 'z w

′, e, w′, z |= SF(n)→ [n]α. Then for all w′ ∈ e with w 'z w
′ and w[SF(n)] = 1,

e, w′, z |= [n]α. By definition of 'z·n and by the rule for [n], for all w′ ∈ e with w 'z·n w
′, e, w′, z ·n |= α.

By the rule for K , e, w, z · n |= Kα. By the rule for [n], e, w, z |= [n]Kα, so the left-hand side holds.

16

