
1

COMP1511 revision lecture

This lecture cannot be played on old tin boxes,
no matter what they are �tted with.

Side A (11-1)
I Thirty Thousand Feet

II Memory, Pointers, Arrays, Lifetimes
III Strings and File I/O

IV Structured Data

Side B (2-4)
V Linked Lists

VI Stacks and Queues
VII Sorting and Searching
VIII Preparing for Exams
IX Debugging with GDB

2

COMP1511 revision lecture
these slides up on WebCMS3

Questions? Ask on Ed!

3

— I —
C Syntax

Curtis Millar
<c.millar@unsw.edu.au>

4Overview
After this section, you should remember…

Variables

Arithmetic and boolean operators

Control Flow

Branching with if

Looping with while

Breaking code into functions

5

— I.5 HD ReMix —
C Style

6Why do I need good style?
Style isn’t about making code simply look good.

Style is about writing code effectively.

Make your code useful and understandable.

Make debugging easier.

Make growing your code easier.

7#1 rule for style.
Consistency

Consistent indentation.

Consistent names.

8Variables
Should describe the value they store.

Should always be honest.

Usually nouns (num_apples) or adjectives for conditions (empty).

9Functions
Should describe the action taken (as a verb, i.e. count_elements).

or

Should describe the condition being tested (is_empty).

10Booleans
FALSE is always 0.

TRUE can be anything else (usually 1).

11An Example!

#define FALSE 0

#define TRUE (!FALSE)

#define TRUE (1 == 1)

int correct = TRUE;

if (correct) {

 // is correct.

}

if (!correct) {

 // is not correct.

}

12Comments
Always provide a function comment.

Describe how the function is used.

The rules for using the function.

13Comments
Avoid inline comments.

If you need comments to explain your code,
your code isn’t clear enough.

Use good style to make sure your code is clear enough on its own.

14

— II —
Memory

Curtis Millar
<c.millar@unsw.edu.au>

15Overview
After this section, you should have memorized…

Memory

Functions

Lifetimes

Pointers

Arrays

16Memory
Everything lives in memory.

Memory is a bunch of cells in a long line.

Each cell has an address.

The �rst cell is 0x00000000.

The second cell is 0x00000001.

…

The last cell is 0xFFFFFFFF.

17Memory
Near the start of memory

(at the 0x00000000 end)
we have

our program code

then

the heap.

18Memory
Near the end of memory

(at the 0xFFFFFFFF end)
we have

the stack.

Not a stack.

The stack grows backwards
(towards 0x00000000)

in memory.

The stack grows when we call functions.

19Functions
Each instance of a function has its own stack frame.

The variables for a function live in its stack frame.

The stack frame is pushed onto the stack
when the function is called.

The stack frame is popped off of the stack
(and destroyed) when the function returns.

20Functions
variables are created inside of functions.

They disappear when the function returns.

arguments are variables that have values copied in
from outside the function.

The function can copy one value back out when it returns.

21Functions - Pass By Copy
arguments are variables that have values copied in

from outside the function.

changing their values inside the function
will not change their values in the calling function

…

if we want to change the value of a variable
in the calling function, we need its address

22Pointers
allow us to pass by reference

“I give you a reference to where this thing lives
rather than giving you your own copy”

23Arrays
an array is a contiguous sequence of values of the same type

e.g.

// creates 10 ints in the function's stack frame

int numbers[10];

numbers refers to the address
of the �rst element in the array

24Arrays and Functions
when we pass an array into a function

we are passing the address of the �rst element

we have no way to distinguish this from
passing the address of a single variable

how do we tell which it is?

how do we know how long the array is?

…

we need to pass the size of the array into the function

25Arrays and Functions
how do we know how big the array is?

void print_array(int *array) {

 int i = 0;

 while (i < ?????) {

 printf("%d ", array[i]);

 i++;

 }

}

we need to pass the size of the array into the function

void print_array(int *array, int length) {

 int i = 0;

 while (i < length) {

 printf("%d ", array[i]);

 i++;

 }

}

26Returning Arrays From Functions
what happens if we create an array inside a function

and return that array?

int *make_array(void) {

 int array[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

 return array;

}

remember, array is the address of the �rst element
in the array

the array lives inside the function’s stack frame
so when the function returns… the array disappears

27The Heap
if we want to create an array inside a function
that will still exist when the function returns,

we need to put it somewhere else

where?
on the heap!

we do this using malloc

int *make_array(void) {

 int *array = malloc(10 * sizeof(int));

 // set the values somehow

 return array;

}

28The Heap - Malloc
malloc gives us a reference to where the memory is stored

because this memory is stored on the heap
it will still exist once the function returns

…

we need to tell malloc how many bytes we want

malloc(number of things * size of each thing)

29The Heap - Malloc - Free
when we’re �nished using the memory, we need to free it

int *array = malloc(...);

...

free(array);

30

— III —
Strings and File I/O

Curtis Millar
<c.millar@unsw.edu.au>

31User Interaction
Interact with users by

reading from stdin

and

writing to stdout.

32Displaying Text
We can use printf!.

Display numbers with "%d" and "%f".

Display strings with "%s".

33Reading Numbers

int integer;

scanf("%d", &integer);

double decimal;

scanf("%lf", &decimal);

34Reading Many Numbers
scanf returns the number of items successfully read.

int numbers[5] = {0};

int num_read = scanf(

 "%d %d %d %d %d",

 &numbers[0],

 &numbers[1],

 &numbers[2],

 &numbers[3],

 &numbers[4]

);

assert(num_read == 5);

35Reading Many Numbers
We can use a loop to read until the end of input.

int numbers[5] = {0};

int i = 0;

while (scanf("%d", &numbers[i]) == 1 && i < 5) {

 i++;

}

36Reading Text
We can use fgets to read text from a �le into an array.

char text[BUFFER_SIZE] = "";

fgets(text, BUFFER_SIZE, stdin);

// in a loop

while (fgets(text, BUFFER_SIZE, stdin) != NULL) {

 // Do something

}

37Processing Characters

int c = getchar();

while (c != EOF) {

 // Do something

 c = getchar();

}

38Redirecting Input and Output
$./my_program < input.txt
$./my_program > output.txt
$./my_program < input.txt > output.txt

39Files
Open a �le and start reading at the beginning.

FILE *file = fopen("filename.txt", "r");

Open a �le and start writing at the beginning
(removing everything that is already there).

FILE *file = fopen("filename.txt", "w");

Open a �le and start appending to the end,
after everything that is already there.

FILE *file = fopen("filename.txt", "a");

40What To Use When Reading…
if you want to…

read numbers
… from the terminal: scanf

… from a �le: fscanf
with %d (int) or %lf (double)

read text
… from the terminal: fgets

… from a �le: fgets

read characters
… from the terminal: getchar

… from a �le: fgetc

41What To Use When Writing…
if you want to…

write numbers
… to the terminal: printf

… to a �le: fprintf
with %d (int) or %lf (double)

write text
… to the terminal: printf

… to a �le: fprintf
with %s

write characters
… to the terminal: putchar

… to a �le: fputc

42How To Read All Input
getchar: EOF

while ((ch = getchar()) != EOF)

fgets: NULL

while (fgets(array, SIZE, stdin) != NULL)

scanf: num items

while (scanf("%d", &num) == 1)

while (scanf("%d %d", &num1, &num2) == 2)

43

— V —
Linked Lists

node Nodes
impl Implementation

o^o Abstractions
map Comprehensions

wrap Wrapped Linked Lists
dll Doubly-Linked Lists

cll Circularly-Linked Lists

44
node Nodes

1 9 2 7

a simple list

45
node Structure

1 9 2 7 NULL

listing lazily to the left

“this value, and all the other values”

46
impl Implementing

value next

* * *

struct node {

 Item value;

 struct node *next;

}

value can represent arbitrarily complex structures:
a single integer! arrays of data! other linked lists!

47
impl Why?

“self-referential” data structure:
points to the same type of structure

items aren’t guaranteed to be adjacent in memory

reordering is ‘easy’ pointer-shuf�ing,
not ‘hard’ value moving

grow and shrink to �t a collection,
instead of having �xed pre-allocations

items can be added or removed in any order

48
impl Creating Nodes

Usually dynamically allocated:

struct node *list = calloc (1, sizeof (struct node));

* * *

struct node *list = calloc (1, sizeof *list);

* * *

struct node *list = malloc (sizeof *list);

49One Fish…
╭───╮
│ 3 ├─*
╰───╯
 a

struct node a = { 3 };

50Two Fish…
╭───╮ ╭───╮
│ 3 ├─* │ 1 ├─*
╰───╯ ╰───╯
 a b

struct node a = { 3 };

struct node b = { 1 };

51Red Fish…
╭───╮ ╭───╮
│ 3 ├────│ 1 ├─*
╰───╯ ╰───╯
 a b

struct node a = { 3 };

struct node b = { 1 };

a.next = &b;

52Blue Fish!
╭───╮ ╭───╮
│ 3 ├────│ 1 ├─╳
╰───╯ ╰───╯
 a b

struct node a = { 3 };

struct node b = { 1 };

a.next = &b;

b.next = NULL;

53
impl Linking Nodes

struct node *n1 = malloc (sizeof *n1);

struct node *n2 = malloc (sizeof *n2);

struct node *n3 = malloc (sizeof *n3);

struct node *n4 = malloc (sizeof *n4);

n1->next = n2;

n2->next = n3;

n3->next = n4;

n4->next = NULL;

54
impl One-Argument list_new

struct node *list_new (Item value);

struct node *list_new2 (Item value, struct node *next);

* * *

struct node *list = list_new (1);

list->next = list_new (9);

list->next->next = list_new (2);

list->next->next->next = list_new (7);

list->next->next->next->next = NULL;

55
impl Two-Argument list_new

struct node *list_new (Item value);

struct node *list_new2 (Item value, struct node *next);

* * *

struct node *list =

 list_new2 (1,

 list_new2 (9,

 list_new2 (2,

 list_new2 (7, NULL))));

56
impl Traversing

1 9 2 7 NULL

here’s one we prepared earlier

struct node *curr = list;

while (curr != NULL) {

 // ...

 curr = curr->next;

}

(“travel across or through;

move back and forth or sideways”)

57
impl Destroying Nodes (I)

free (list);

… what’s wrong with this?

58
impl Destroying Nodes (II)

free (list);

free (list->next);

free (list->next->next);

free (list->next->next->next);

Newton’s third law of memory management:
for every allocation, there is an equal and opposite free

… what’s wrong with this?

59
impl Destroying Nodes (III)

struct node *curr = head;

struct node *next;

while (curr != NULL) {

 next = curr->next;

 free (curr);

 curr = next;

}

A delicate dance… because
use after free is illegal

(if you do it,
I climb out of your screen
and set your hair on �re)

(dcc yells at you if you do!)

60
o^o Abstractions

you should ALWAYS build abstractions to make LLs easier
doing pointer-y evils all the time is terrible, no good, very bad.

list_new creates a new list

list_insert_head prepends a value to the list

list_insert_tail appends a value to the list

list_remove_head removes the �rst value of the list

list_remove_tail removes the last value of the list

list_is_empty tells you if the list is empty

list_delete destroys the whole list

(These are very handy functions!)

61
o^o Implementing

[[demo: list/list.h]]
[[demo: list/list.c]]

62
map Comprehension

int list_sum (struct node *n) {

 int sum = 0;

 struct node *curr = n;

 while (curr != NULL) {

 count += curr->value;

 curr = curr->next;

 }

 return sum;

}

63
map Recursion (II)

“do something here, and with the rest of the list”
linked lists are particularly amenable to recursion

int list_sum (struct node *n) {

 int sum;

 if (n == NULL) {

 sum = 0;

 } else {

 sum = n->value + list_sum (n->next);

 }

 return sum;

}

64
map Recursion (II)

int list_sum (struct node *n) {

 if (n == NULL) {

 return 0;

 }

 return n->value + list_sum (n->next);

}

one of the few places where an early return is probably okay

65
wrap Wrapping (I)

Sometimes, we wrap it.

this lets us…
easily move the head

have constant-time operations

head tail nI=4

1 79 2 NULL

what a head

66
wrap struct list

struct list {

 struct node *head; // or first

 struct node *tail; // or last

 int n_items; // or length

};

head ⇒ �rst item; easy head insertion
tail ⇒ last item; easier tail insertion… why?
n_items ⇒ item count; easier length… why?

67
dll Doubly-Linked Lists
1 9

NULL

2 7

both sides together

traverse in both directions!
swapping & deletion becomes harder…

68
cll Circular Linked Lists

1

9

7

2

circle!

the linked list turns, and the nodes come and pass,
leaving pointers that become invalidated…

pointers become freed, and even the list is long forgotten
when the node that gave it birth comes again…

with apologies to Robert Jordan

don’t lose track of the “beginning” of the list

69

— VI —
Stacks and Queues

Curtis Millar
<c.millar@unsw.edu.au>

70Abstract Data Types
De�ne the interface for interacting with the data type.

Hide the implementation for the data type.

71Interface vs. Implementation

#ifndef DATA_TYPE_H

#define DATA_TYPE_H

Describe the interface in the DataType.h �le.

Always need a way to create and destroy the ADT.

#endif /* DATA_TYPE_H */

72Interface vs. Implementation

#include "DataType.h"

De�ne the implementation in the DataType.c �le.

73Stacks
Stacks are �rst in, last out.

The �rst value we insert into a stack is the last value we remove.

Inserting is pushing onto a stack.

Removing is popping off of the stack.

74Stacks
Could implement with a �xed size array.

75Stacks
Could implement with a linked list.

76Queues
Stacks are �rst in, �rst out.

The �rst value we insert into a queue is the �rst value we remove.

Inserting is joining (or enqueueing) a queue.

Removing is leaving (or dequeueing) a queue.

77Queues
Could implement with a �xed size array.

78Queues
Could implement with a linked list.

79

— VII —
Sorting and Searching

sort Ordering Things
search Finding Things

stdlib stdlib.h for fun and pro�t

80
sort Bubble Sort

best , average , worst
probably stable, probably adaptive

https://youtu.be/Cq7SMsQBEUw

81
sort Quick Sort

max: best , average , worst
med3: best , average , worst
rand: best , average , worst

maybe stable, maybe adaptive

https://youtu.be/8hEyhs3OV1w

82
stdlib qsort for fun and pro�t

void qsort (

 void *base, // bottom of the array

 size_t nmemb, // number of items

 size_t size, // size of each item

 int (*compar)(const void *, const void *)

 // function comparing two items

);

[[demo: sose/ord.c]]

83
search Finding Things

how many questions to �nd a value in this space?

[[demo: sose/lsearch.c]]

84
search Finding Things

how many questions to �nd a value in this space?

[[demo: sose/bsearch.c]]

85
stdlib bsearch for fun and pro�t

void *bsearch (

 const void *key, // search key

 const void *base, // bottom of the array

 size_t nmemb, // number of items

 size_t size, // size of each item

 int (*compar)(const void *, const void *)

 // function comparing two items

);

[[demo: sose/monthnum.c]]

86

— VIII —
Preparing for Exams

Tips and tricks for the exam

87Coding Under Pressure
tip #1: sit on your hands

don’t just jump straight in and start coding
(or your code will be a tangled mess)

�rst, read the question

think about what it is you’re setting out to do

think about how you need to approach the question

draw diagrams
(we’ll give you paper to write on)

88Coding Under Pressure
tip #2: read all of the questions �rst

start with the questions you �nd easy

start with the easy hurdle questions
(arrays and linked lists – these will be clearly marked)

don’t spend all of your time on the harder problems
without doing the easier ones �rst

89Revision
tip #3: practice writing code

do the revision exercises
(linked on course website)

do the extra tute questions – there are lots of them!
(at the bottom of every tutorial page)

90Skeleton Exam
tip #4: read the skeleton exam

we give you the actual exam paper
before the exam

(with the content of the questions removed)

read this so you know what to expect
(how many questions, what type they are, how many marks)

91Don’t Panic
tip #5: if there’s a problem,

tell the invigilator
if the autotests are broken

if you don’t understand what a question means

if your keyboard/mouse don’t work properly

if you can’t concentrate because the door is beeping

if the monitor is so bright it’s giving you a headache

…

tell the invigilator!

92The End
good luck with the exam!

