Exercise sheet 8b

COMP6741: Parameterized and Exact Computation

Serge Gaspers

19T3

Exercise 1. Show that the algorithm solving Comp-FVS from the lecture notes has running time $O^*(4^k)$.

Exercise 2. Recall that a cluster graph is a graph where every connected component is a complete graph.

Cluster Vertex Deletion

Input: Graph G = (V, E), integer k

Parameter: k

Question: Is there a set of vertices $S \subseteq V$ with $|S| \le k$ such that G - S is a cluster graph?

Recall that G is a cluster graph iff G contains no induced P_3 .

• Design an $O^*(2^k)$ time algorithm for Cluster Vertex Deletion.

Hints. (1) Show that the disjoint version of the problem can be solved in polynomial time: given (G = (V, E), S, k) such that |S| = k+1 and G-S is a cluster graph, find a $S^* \subseteq V \setminus S$ with $|S^*| \le k$ such that $G-S^*$ is a cluster graph. (2) Simplification rule for $v \in V \setminus S$ inducing a P_3 with 2 vertices in S. Reduce to maximum weight matching.