8a. Randomized Algorithms

COMP6741: Parameterized and Exact Computation

Serge Gaspers\(^1\)\(^2\)

\(^1\)School of Computer Science and Engineering, UNSW Sydney, Australia
\(^2\)Decision Sciences Group, Data61, CSIRO, Australia

Semester 2, 2018
Outline

1. Introduction
2. Vertex Cover
3. Feedback Vertex Set
4. Color Coding
5. Monotone Local Search
Outline

1. Introduction
2. Vertex Cover
3. Feedback Vertex Set
4. Color Coding
5. Monotone Local Search
Turing machines do not inherently have access to randomness.

Assume algorithm has also access to a stream of random bits drawn uniformly at random.

With r random bits, the probability space is the set of all 2^r possible strings of random bits (with uniform distribution).
Las Vegas algorithms

Definition 1

A Las Vegas algorithm is a randomized algorithm whose output is always correct. Randomness is used to upper bound the expected running time of the algorithm.

Example

Quicksort with random choice of pivot.
Definition 2

- A **Monte Carlo algorithm** is an algorithm whose output is incorrect with probability at most p, $0 < p < 1$.
- A Monte Carlo has **one sided** error if its output is incorrect only on **Yes**-instances or on **No**-instances, but not both.
- A one-sided error Monte Carlo algorithm with **false negatives** answers **No** for every **No**-instance, and answers **Yes** on **Yes**-instances with probability $p \in (0, 1)$. We say that p is the **success probability** of the algorithm.
Suppose \(A \) is a one-sided Monte Carlo algorithm with false negatives with success probability \(p \). How can we use \(A \) to design a new one-sided Monte Carlo algorithm with success probability \(p^* > p \)?

Let \(t = -\ln(1 - p^*) \) and run the algorithm \(t \) times. Return Yes if at least one run of the algorithm returned Yes, and No otherwise.

Failure probability is \((1 - p^*)^t \leq e^{-pt} = e^{-\ln(1 - p^*)} = 1 - p^*\) via the inequality \(1 - x \leq e^{-x}\).
Algorithms with increased success probability

Boosting success probability

Suppose A is a one-sided Monte Carlo algorithm with false negatives with success probability p. How can we use A to design a new one-sided Monte Carlo algorithm with success probability $p^* > p$?

Let $t = -\frac{\ln(1-p^*)}{p}$ and run the algorithm t times. Return **Yes** if at least one run of the algorithm returned **Yes**, and **No** otherwise.
Boosting success probability

Suppose A is a one-sided Monte Carlo algorithm with false negatives with success probability p. How can we use A to design a new one-sided Monte Carlo algorithm with success probability $p^* > p$?

Let $t = -\frac{\ln(1-p^*)}{p}$ and run the algorithm t times. Return YES if at least one run of the algorithm returned YES, and NO otherwise. Failure probability is

$$(1 - p)^t \leq (e^{-p})^t = \frac{1}{e^{pt}} = e^{\ln(1-p^*)} = 1 - p^*$$

via the inequality $1 - x \leq e^{-x}$.

Algorithms with increased success probability

Boosting success probability

Suppose A is a one-sided Monte Carlo algorithm with false negatives with success probability p. How can we use A to design a new one-sided Monte Carlo algorithm with success probability $p^* > p$?

Let $t = -\frac{\ln(1-p^*)}{p}$ and run the algorithm t times. Return YES if at least one run of the algorithm returned YES, and NO otherwise. Failure probability is

$$ (1 - p)^t \leq (e^{-p})^t = \frac{1}{e^{pt}} = e^{\ln(1-p^*)} = 1 - p^* $$

via the inequality $1 - x \leq e^{-x}$.

Definition 3

A randomized algorithm is a one-sided Monte Carlo algorithm with constant success probability.
Theorem 4

If a one-sided error Monte Carlo algorithm has success probability at least p, then repeating it independently $\lceil \frac{1}{p} \rceil$ times gives constant success probability.

In particular if we have a polynomial-time one-sided error Monte Carlo algorithm with success probability $p = \frac{1}{f(k)}$ for some computable function f, then we get a randomized FPT algorithm with running time $O^*(f(k))$.
Outline

1. Introduction
2. Vertex Cover
3. Feedback Vertex Set
4. Color Coding
5. Monotone Local Search
Vertex Cover

For a graph $G = (V, E)$ a vertex cover $X \subseteq V$ is a set of vertices such that every edge is adjacent to a vertex in X.

Vertex Cover

Input: Graph G, integer k

Parameter: k

Question: Does G have a vertex cover of size k?
For a graph $G = (V, E)$ a vertex cover $X \subseteq V$ is a set of vertices such that every edge is adjacent to a vertex in X.

Vertex Cover

Input: Graph G, integer k

Parameter: k

Question: Does G have a vertex cover of size k?

Warm-up: design a randomized algorithm with running time $O^*(2^k)$.
Theorem 5

Vertex Cover has a randomized algorithm with running time $O^*(2^k)$.

Proof.

- Select an edge $uv \in E$ uniformly at random.
- Select an endpoint $w \in \{u, v\}$ of that edge uniformly at random.
- Add w to the partial vertex cover S (initially empty).
- If G has vertex cover number at most k, then repeating this k times gives a vertex cover with probability at least $\frac{1}{2^k}$.
- Applying Theorem 4 gives a randomized FPT running time of $O^*(2^k)$.

□
Outline

1 Introduction

2 Vertex Cover

3 Feedback Vertex Set

4 Color Coding

5 Monotone Local Search
A \textit{feedback vertex set} of a multigraph $G = (V, E)$ is a set of vertices $S \subset V$ such that $G - S$ is acyclic.

<table>
<thead>
<tr>
<th>Feedback Vertex Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: Multigraph G, integer k</td>
</tr>
<tr>
<td>Parameter: k</td>
</tr>
<tr>
<td>Question: Does G have a feedback vertex of size k?</td>
</tr>
</tbody>
</table>
A *feedback vertex set* of a multigraph $G = (V, E)$ is a set of vertices $S \subset V$ such that $G - S$ is acyclic.

Feedback Vertex Set

Input: Multigraph G, integer k

Parameter: k

Question: Does G have a feedback vertex of size k?

Recall our simplification rules for Feedback Vertex Set.
Simplification Rules

1. Loop: If loop at vertex v, remove v and decrease k by 1
2. Multiedge: Reduce the multiplicity of each edge with multiplicity ≥ 3 to 2.
3. Degree-1: If v has degree at most 1 then remove v.
4. Degree-2: If v has degree 2 with neighbors u, w then delete 2 edges uv, vw and replace with new edge uw.
5. Budget: If $k < 0$, then return no.
The solution is incident to a constant fraction of the edges

Lemma 6

Let G be a multigraph with minimum degree at least 3. Then, for every feedback vertex set X of G, at least $\frac{1}{3}$ of the edges have at least one endpoint in X.
Lemma 6

Let G be a multigraph with minimum degree at least 3. Then, for every feedback vertex set X of G, at least $1/3$ of the edges have at least one endpoint in X.

Proof.

Denote by n and m the number of vertices and edges of G, respectively. Since $\delta(G) \geq 3$, we have that $m \geq 3n/2$. Let $F := G - X$. Since F has at most $n - 1$ edges, at least $\frac{1}{3}$ of the edges have an endpoint in X.

\qed
Theorem 7

Feedback Vertex Set has a randomized algorithm with running time $O^*(6^k)$.

We prove the theorem using the following algorithm.

$S \leftarrow \emptyset$

Do k times: Apply simplification rules; add a random endpoint of a random edge to S.

If S is a feedback vertex set, return Yes, otherwise return No.
Feedback Vertex Set has a randomized algorithm with running time $O^*(6^k)$.

We prove the theorem using the following algorithm.

- $S \leftarrow \emptyset$
- Do k times: Apply simplification rules; add a random endpoint of a random edge to S.
- If S is a feedback vertex set, return Yes, otherwise return No.
Proof.

We need to show: each time the algorithm adds a vertex v to S, if $(G - S, k - |S|)$ is a Yes-instance, then with probability at least $1/6$, the instance $(G - (S \cup \{v\}), k - |S| - 1)$ is also a Yes-instance. Then, by induction, we can conclude that with probability $1/(6^k)$, the algorithm finds a feedback vertex set of size at most k if it is given a Yes-instance.
Proof.

- We need to show: each time the algorithm adds a vertex \(v \) to \(S \), if \((G - S, k - |S|)\) is a \textbf{Yes}-instance, then with probability at least \(1/6\), the instance \((G - (S \cup \{v\}), k - |S| - 1)\) is also a \textbf{Yes}-instance. Then, by induction, we can conclude that with probability \(1/(6^k)\), the algorithm finds a feedback vertex set of size at most \(k\) if it is given a \textbf{Yes}-instance.

- Assume \((G - S, k - |S|)\) is a \textbf{Yes}-instance.

- Lemma 6 implies that with probability at least \(1/3\), a randomly chosen edge \(uv\) has at least one endpoint in some feedback vertex set of size \(k - |S|\).

- So, with probability at least \(\frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}\), a randomly chosen endpoint of \(uv\) belongs some feedback vertex set.
We need to show: each time the algorithm adds a vertex \(v \) to \(S \), if \((G - S, k - |S|)\) is a \textbf{Yes}-instance, then with probability at least \(1/6 \), the instance \((G - (S \cup \{v\}), k - |S| - 1)\) is also a \textbf{Yes}-instance. Then, by induction, we can conclude that with probability \(1/(6^k) \), the algorithm finds a feedback vertex set of size at most \(k \) if it is given a \textbf{Yes}-instance.

Assume \((G - S, k - |S|)\) is a \textbf{Yes}-instance.

Lemma 6 implies that with probability at least \(1/3 \), a randomly chosen edge \(uv \) has at least one endpoint in some feedback vertex set of size \(k - |S| \).

So, with probability at least \(\frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6} \), a randomly chosen endpoint of \(uv \) belongs some feedback vertex set.

Applying Theorem 4 gives a randomized FPT running time of \(O^*(6^k) \).
Improved analysis

Lemma 8

Let G be a multigraph with minimum degree at least 3. For every feedback vertex set X, at least $\frac{1}{2}$ of the edges of G have at least one endpoint in X.

Note: For a feedback vertex set X, consider the forest $F := G - X$. The statement is equivalent to:

$|E(G) \setminus E(F)| \geq |E(F)|$

Let $J \subseteq E(G)$ denote the edges with one endpoint in X, and the other in $V(F)$.

We will show the stronger result:

$|J| \geq |V(F)|$
Improved analysis

Lemma 8

Let G be a multigraph with minimum degree at least 3. For every feedback vertex set X, at least $\frac{1}{2}$ of the edges of G have at least one endpoint in X.

Note: For a feedback vertex set X, consider the forest $F := G - X$. The statement is equivalent to:

$$|E(G) \setminus E(F)| \geq |E(F)|$$

Let $J \subseteq E(G)$ denote the edges with one endpoint in X, and the other in $V(F)$. We will show the stronger result:

$$|J| \geq |V(F)|$$
Improved analysis

Proof.

Let $V_{\leq 1}, V_2, V_{\geq 3}$ be the set of vertices that have degree at most 1, exactly 2, and at least 3, respectively, in F.

Since $\delta(G) \geq 3$, each vertex in $V_{\leq 1}$ contributes at least 2 edges to J, and each vertex in V_2 contributes at least 1 edge to J. We show that $|V_{\geq 3}| \leq |V_{\leq 1}|$ by induction on $|V(F)|$. Trivially true for forests with at most 1 vertex. Assume true for forests with at most $n-1$ vertices. For any forest on n vertices, consider removing a leaf (which must always exist) to obtain F' with the vertex partition $(V_{\leq 1}', V_2', V_{\geq 3}')$. If $|V_{\geq 3}| = |V_{\geq 3}'|$, then we have that $|V_{\geq 3}| = |V_{\geq 3}'| \leq |V_{\leq 1}'| \leq |V_{\geq 1}|$. Otherwise, $|V_{\geq 3}| = |V_{\geq 3}'| + 1 \leq |V_{\leq 1}'| + 1 = |V_{\leq 1}|$. We conclude that:

$|E(G) \setminus E(F)| \geq |J| \geq 2 |V_{\leq 1}| + |V_2| + |V_{\geq 3}| = |V(F)|$.
Proof.

- Let $V_{\leq 1}, V_2, V_{\geq 3}$ be the set of vertices that have degree at most 1, exactly 2, and at least 3, respectively, in F.

- Since $\delta(G) \geq 3$, each vertex in $V_{\leq 1}$ contributes at least 2 edges to J, and each vertex in V_2 contributes at least 1 edge to J.

We conclude that:

$$|E(G) \setminus E(F)| \geq |J| \geq 2|V_{\leq 1}| + |V_{\leq 2}| + |V_{\geq 3}| = |V(F)|.$$
Proof.

- Let $V_{\leq 1}, V_2, V_{\geq 3}$ be the set of vertices that have degree at most 1, exactly 2, and at least 3, respectively, in F.

- Since $\delta(G) \geq 3$, each vertex in $V_{\leq 1}$ contributes at least 2 edges to J, and each vertex in V_2 contributes at least 1 edge to J.

- We show that $|V_{\geq 3}| \leq |V_{\leq 1}|$ by induction on $|V(F)|$.
 - Trivially true for forests with at most 1 vertex.
 - Assume true for forests with at most $n - 1$ vertices.
 - For any forest on n vertices, consider removing a leaf (which must always exist) to obtain F' with the vertex partition $(V'_{\leq 1}, V'_2, V'_{\geq 3})$.
 - If $|V_{\geq 3}| = |V'_{\geq 3}|$, then we have that $|V_{\geq 3}| = |V'_{\geq 3}| \leq |V'_{\leq 1}| \leq |V_{\leq 1}|$.
 - Otherwise, $|V_{\geq 3}| = |V'_{\geq 3}| + 1 \leq |V'_{\leq 1}| + 1 = |V_{\leq 1}|$.
Improved analysis

Proof.

- Let $V_{\leq 1}, V_2, V_{\geq 3}$ be the set of vertices that have degree at most 1, exactly 2, and at least 3, respectively, in F.

- Since $\delta(G) \geq 3$, each vertex in $V_{\leq 1}$ contributes at least 2 edges to J, and each vertex in V_2 contributes at least 1 edge to J.

- We show that $|V_{\geq 3}| \leq |V_{\leq 1}|$ by induction on $|V(F)|$.
 - Trivially true for forests with at most 1 vertex.
 - Assume true for forests with at most $n-1$ vertices.
 - For any forest on n vertices, consider removing a leaf (which must always exist) to obtain F' with the vertex partition $(V'_{\leq 1}, V'_2, V'_{\geq 3})$.
 - If $|V_{\geq 3}| = |V'_{\geq 3}|$, then we have that $|V_{\geq 3}| = |V'_{\geq 3}| \leq |V'_{\leq 1}| \leq |V_{\leq 1}|$.
 - Otherwise, $|V_{\geq 3}| = |V'_{\geq 3}| + 1 \leq |V'_{\leq 1}| + 1 = |V_{\leq 1}|$.

- We conclude that:

$$|E(G) \setminus E(F)| \geq |J| \geq 2|V_{\leq 1}| + |V_2| \geq |V_{\leq 1}| + |V_2| + |V_{\geq 3}| = |V(F)|$$
Improved Randomized Algorithm

Theorem 9

Feedback Vertex Set has a randomized algorithm with running time $O^*(4^k)$.

Note

This algorithmic method is applicable whenever the vertex set we seek is incident to a constant fraction of the edges.
Outline

1. Introduction
2. Vertex Cover
3. Feedback Vertex Set
4. Color Coding
5. Monotone Local Search
Longest Path

Input: Graph G, integer k

Parameter: k

Question: Does G have a path on k vertices as a subgraph?

NP-complete

To show that *Longest Path* is NP-hard, reduce from *Hamiltonian Path* by setting $k = n$ and leaving the graph unchanged.
Longest Path

Input: Graph G, integer k

Parameter: k

Question: Does G have a path on k vertices as a subgraph?

NP-complete

To show that Longest Path is NP-hard, reduce from Hamiltonian Path by setting $k = n$ and leaving the graph unchanged.
Lemma 10

Let U be a set of size n, and let $X \subseteq U$ be a subset of size k. Let $\chi : U \rightarrow [k]$ be a coloring of the elements of U, chosen uniformly at random. Then the probability that the elements of X are colored with pairwise distinct colors is at least e^{-k}.
Lemma 10

Let U be a set of size n, and let $X \subseteq U$ be a subset of size k. Let $\chi : U \rightarrow [k]$ be a coloring of the elements of U, chosen uniformly at random. Then the probability that the elements of X are colored with pairwise distinct colors is at least e^{-k}.

Proof.

There are k^n possible colorings χ and $k!k^{n-k}$ of them are injective on X. Using the inequality

$$k! > (k/e)^k,$$

the lemma follows since

$$\frac{k! \cdot k^{n-k}}{k^n} > \frac{k^k \cdot k^{n-k}}{e^k \cdot k^n} = e^{-k}.$$
A path is **colorful** if all vertices of the path are colored with pairwise distinct colors.

Lemma 11

Let G be an undirected graph, and let $\chi : V(G) \rightarrow [k]$ be a coloring of its vertices with k colors. There is an algorithm that checks in time $O^*(2^k)$ whether G contains a colorful path on k vertices.
Proof.

Partition $V(G)$ into V_1, \ldots, V_k subsets such that vertices in V_i are colored i.
Proof.

Partition $V(G)$ into V_1, \ldots, V_k subsets such that vertices in V_i are colored i. Apply dynamic programming on nonempty $S \subseteq \{1, \ldots, k\}$. For $u \in \bigcup_{i \in S} V_i$ let $P(S, u) = true$ if there is a colorful path with colors from S and u as an endpoint.
Colorful Path II

Proof.

Partition $V(G)$ into $V_1, ..., V_k$ subsets such that vertices in V_i are colored i. Apply dynamic programming on nonempty $S \subseteq \{1, ..., k\}$. For $u \in \bigcup_{i \in S} V_i$ let $P(S, u) = true$ if there is a colorful path with colors from S and u as an endpoint. We have the following:

- For $|S| = 1$, $P(S, u) = true$ for $u \in V(G)$ iff $S = \{\chi(u)\}$.
- For $|S| > 1$

$$P(S, u) = \begin{cases} \bigvee_{uv \in E(G)} P(S \setminus \{\chi(u)\}, v) & \text{if } \chi(u) \in S \\ false & \text{otherwise} \end{cases}$$
Proof.

Partition $V(G)$ into $V_1, ..., V_k$ subsets such that vertices in V_i are colored i. Apply dynamic programming on nonempty $S \subseteq \{1, ..., k\}$. For $u \in \bigcup_{i \in S} V_i$ let $P(S, u) = true$ if there is a colorful path with colors from S and u as an endpoint. We have the following:

- For $|S| = 1$, $P(S, u) = true$ for $u \in V(G)$ iff $S = \{\chi(u)\}$.
- For $|S| > 1$

$$P(S, u) = \begin{cases} \bigvee_{uv \in E(G)} P(S \setminus \{\chi(u)\}, v) & \text{if } \chi(u) \in S \\ false & \text{otherwise} \end{cases}$$

All values of P can be computed in $O^*(2^k)$ time and there exists a colorful k-path iff $P([k], v)$ is true for some vertex $v \in V(G)$. \qed
Theorem 12

\textbf{Longest Path} has a randomized algorithm with running time $O^*((2 \cdot e)^k)$.

Note

This algorithmic method is applicable whenever we seek a vertex set of size $O(f(k))$ that has constant treewidth.
Outline

1. Introduction
2. Vertex Cover
3. Feedback Vertex Set
4. Color Coding
5. Monotone Local Search
Exponential-time algorithms and parameterized algorithms

Exponential-time algorithms

- Algorithms for NP-hard problems
- Beat brute-force & improve
- Running time measured in the size of the universe n
- $O(2^n \cdot n), O(1.5086^n), O(1.0892^n)$

Parameterized algorithms

- Algorithms for NP-hard problems
- Use a parameter k (often k is the solution size)
- Algorithms with running time $f(k) \cdot n^c$
- $k^k n^{O(1)}, 5^k n^{O(1)}, O(1.2738^k + kn)$

Can we use Parameterized algorithms to design fast Exponential-time algorithms?
Example: Feedback Vertex Set

$S \subseteq V$ is a feedback vertex set in a graph $G = (V, E)$ if $G - S$ is acyclic.

Feedback Vertex Set

Input: Graph $G = (V, E)$, integer k

Parameter: k

Question: Does G have a feedback vertex set of size at most k?
Example: Feedback Vertex Set

\[S \subseteq V \text{ is a feedback vertex set in a graph } G = (V, E) \text{ if } G - S \text{ is acyclic.} \]

Feedback Vertex Set

Input: Graph \(G = (V, E) \), integer \(k \)

Parameter: \(k \)

Question: Does \(G \) have a feedback vertex set of size at most \(k \)?

Exponential-time algorithms

- \(O^*(2^n) \) trivial
- \(O(1.8899^n) \) [Razgon 06]
- \(O(1.7548^n) \) [Fomin, Gaspers, Pyatkin 06]
- \(O(1.7356^n) \) [Xiao, Nagamoshi 13]
- \(O(1.7347^n) \) [Fomin, Todinca, Villanger 15]

Parameterized algorithms

- \(O^*((17k^4)!|Bodlaender 94|) \)
- \(O^*((2k + 1)^k) \) [Downey, Fellows 98]
- \(O^*(3.591^k) \) [Kociumaka, Pilipczuk 14]
- \(O^*(3^k) \) (r) [Cygan 11]
Exponential-time algorithms via parameterized algorithms

Binomial coefficients

\[\arg \max_{0 \leq k \leq n} \binom{n}{k} = \frac{n}{2} \quad \text{and} \quad \binom{n}{n/2} = \Theta(2^n / \sqrt{n}) \]
Binomial coefficients

\[
\arg \max_{0 \leq k \leq n} \binom{n}{k} = \frac{n}{2} \quad \text{and} \quad \binom{n}{n/2} = \Theta(2^{n/\sqrt{n}})
\]

Algorithm for Feedback Vertex Set

- Set \(t = 0.60909 \cdot n \)
- If \(k \leq t \), run \(O^*(3^k) \) algorithm
- Else check all \(\binom{n}{k} \) vertex subsets of size \(k \)

Running time: \(O^* \left(\max \left(3^t, \binom{n}{t} \right) \right) = O^*(1.9526^n) \)
Exponential-time algorithms via parameterized algorithms

Binomial coefficients

$$\arg \max_{0 \leq k \leq n} \binom{n}{k} = n/2 \quad \text{and} \quad \binom{n}{n/2} = \Theta(2^{n/\sqrt{n}})$$

Algorithm for Feedback Vertex Set

- Set $t = 0.60909 \cdot n$
- If $k \leq t$, run $O^*(3^k)$ algorithm
- Else check all $\binom{n}{k}$ vertex subsets of size k

Running time: $O^*(\max(3^t, \binom{n}{t})) = O^*(1.9526^n)$

This approach gives algorithms faster than $O^*(2^n)$ for subset problems with a parameterized algorithm faster than $O^*(4^k)$.
An *implicit set system* is a function Φ with:

- **Input**: instance $I \in \{0, 1\}^*$, $|I| = N$
- **Output**: set system (U_I, F_I):
 - universe U_I, $|U_I| = n$
 - family F_I of subsets of U_I
An *implicit set system* is a function Φ with:

- **Input:** instance $I \in \{0, 1\}^*$, $|I| = N$
- **Output:** set system (U_I, F_I):
 - universe U_I, $|U_I| = n$
 - family F_I of subsets of U_I

Φ-SUBSET

Input: Instance I

Question: Is $|F_I| > 0$?
An *implicit set system* is a function Φ with:

- **Input:** instance $I \in \{0, 1\}^*$, $|I| = N$
- **Output:** set system (U_I, F_I):
 - universe U_I, $|U_I| = n$
 - family F_I of subsets of U_I

Φ-Subset

Input: Instance I

Question: Is $|F_I| > 0$?

Φ-Extension

Input: Instance I, a set $X \subseteq U_I$, and an integer k

Question: Does there exist a subset $S \subseteq (U_I \setminus X)$ such that $S \cup X \in F_I$ and $|S| \leq k$?
Suppose \(\Phi \text{-EXTENSION} \) has a \(O^*(c^k) \) time algorithm \(B \).

Algorithm for checking whether \(\mathcal{F}_I \) contains a set of size \(k \)

- Set \(t = \max \left(0, \frac{ck-n}{c-1} \right) \)
- Uniformly at random select a subset \(X \subseteq U_I \) of size \(t \)
- Run \(B(I, X, k-t) \)
Suppose Φ-extension has a $O^*(c^k)$ time algorithm B.

Algorithm for checking whether \mathcal{F}_I contains a set of size k

- Set $t = \max \left(0, \frac{ck-n}{c-1}\right)$
- Uniformly at random select a subset $X \subseteq U_I$ of size t
- Run $B(I, X, k-t)$

Running time: [Fomin, Gaspers, Lokshtanov, Saurabh 16]

\[
O^* \left(\frac{n}{t} \cdot \frac{c^{k-t}}{k^t} \right) = O^* \left(2 - \frac{1}{c} \right)^n
\]
Intuition

Brute-force randomized algorithm

- Pick \(k \) elements of the universe one-by-one.
- Suppose \(\mathcal{F}_I \) contains a set of size \(k \).

Success probability:

\[
\frac{k}{n} \cdot \frac{k-1}{n-1} \cdot \frac{k-t}{n-t} \cdot \ldots \cdot \frac{2}{n-(k-2)} \cdot \frac{1}{n-(k-1)} = \frac{1}{\binom{n}{k}}
\]

\[
\Rightarrow \quad \frac{1}{c}
\]
Randomized Monotone Local Search

Theorem 13 ([Fomin, Gaspers, Lokshtanov, Saurabh 16])

If there exists a (randomized) algorithm for Φ-Extension with running time $O^*(c^k)$ then there exists a randomized algorithm for Φ-Subset with running time $(2 - \frac{1}{c})^n \cdot N^{O(1)}$.
Randomized Monotone Local Search

Theorem 13 ([Fomin, Gaspers, Lokshtanov, Saurabh 16])

If there exists a (randomized) algorithm for Φ-Extension with running time $O^*(c^k)$ then there exists a randomized algorithm for Φ-Subset with running time $(2 - \frac{1}{c})^n \cdot N^{O(1)}$.

Theorem 14 ([Fomin, Gaspers, Lokshtanov, Saurabh 16])

Feedback Vertex Set has a randomized algorithm with running time $O^* \left((2 - \frac{1}{3})^n \right) \subseteq O(1.6667^n)$.
Derandomization at the expense of a subexponential factor in the running time.

Theorem 15 ([Fomin, Gaspers, Lokshtanov, Saurabh 16])

If there exists an algorithm for Φ-Extension with running time $O^(c^k)$ then there exists an algorithm for Φ-Subset with running time $(2 - \frac{1}{c})^{n+o(n)} \cdot N^{O(1)}$.***
Derandomization at the expense of a subexponential factor in the running time.

Theorem 15 ([Fomin, Gaspers, Lokshtanov, Saurabh 16])

If there exists an algorithm for \(\Phi\text{-EXTENSION} \) with running time \(O^*(c^k) \) then there exists an algorithm for \(\Phi\text{-SUBSET} \) with running time \((2 - \frac{1}{c})^{n+o(n)} \cdot N^O(1) \).

Theorem 16 ([Fomin, Gaspers, Lokshtanov, Saurabh 16])

Feedback Vertex Set has an algorithm with running time \(O^* \left(\left(2 - \frac{1}{3.591} \right)^n \right) \subseteq O(1.7216^n) \).
Multivariate Subroutines

Theorem 17 ([Gaspers, Lee 17])

If there exists an algorithm for Φ-Extension with running time $O^*(b^n - |X| \cdot c^k)$ *
then there exists an algorithm for Φ-Subset with running time

$(1 + b - \frac{1}{c})^{n+o(n)} \cdot N^{O(1)}$.

Theorem 18 ([Gaspers, Lee 17])

Feedback Vertex Set Extension can be solved in time $O(1.5422^n - |X| 1.2041^k)$.

Corollary 19 ([Gaspers, Lee 17])

Feedback Vertex Set can be solved in time $O(1.7117^n)$.
Further Reading

